
The GO OBITools

SEric Coissac

2022-08-25

2

Contents

1 The OBITools 5
1.1 Aims of OBITools . 5
1.2 File formats usable with OBITools 5
1.3 File extension . 9
1.4 See also . 9
1.5 References . 9

2 The OBITools commands 11
2.1 Specifying the input files to OBITools commands 11
2.2 Options common to most of the OBITools commands 11
2.3 Metabarcode design and quality assessment 13
2.4 File format conversions . 13
2.5 Sequence annotations . 13
2.6 Computations on sequences . 13
2.7 Sequence sampling and filtering 13

3 Reference documentation for the GO OBITools library 15
3.1 BioSequence . 15

4 Annexes 19

3

4 CONTENTS

Chapter 1

The OBITools

1.1 Aims of OBITools

1.2 File formats usable with OBITools
1.2.1 The sequence files
Sequences can be stored following various format. OBITools knows some of
them. The central formats for sequence files manipulated by OBITools scripts
are the fasta and fastq format. OBITools extends the both these formats by
specifying a syntax to include in the definition line data qualifying the sequence.
All file formats use the IUPAC code for encoding nucleotides.

1.2.2 The IUPAC Code
The International Union of Pure and Applied Chemistry (IUPAC_) defined the
standard code for representing protein or DNA sequences.

1.2.2.1 Nucleic IUPAC Code

Code Nucleotide
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil
R Purine (A or G)
Y Pyrimidine (C, T, or U)
M C or A

5

6 CHAPTER 1. THE OBITOOLS

Code Nucleotide
K T, U, or G
W T, U, or A
S C or G
B C, T, U, or G (not A)
D A, T, U, or G (not C)
H A, T, U, or C (not G)
V A, C, or G (not T, not U)
N Any base (A, C, G, T, or U)

1.2.3 The fasta format
The fasta format is certainly the most widely used sequence file format. This is
certainly due to its great simplicity. It was originally created for the Lipman and
Pearson FASTA program. OBITools use in more of the classical :ref:fasta format
an :ref:extended version of this format where structured data are included in
the title line.

In fasta format a sequence is represented by a title line beginning with a
> character and the sequences by itself following the :doc:iupac code. The
sequence is usually split other severals lines of the same length (expect for the
last one)

>my_sequence this is my pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

This is no special format for the title line excepting that this line should be
unique. Usually the first word following the > character is considered as the
sequence identifier. The end of the title line corresponding to a description of the
sequence. Several sequences can be concatenated in a same file. The description
of the next sequence is just pasted at the end of the record of the previous one

>sequence_A this is my first pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_B this is my second pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_C this is my third pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Citation

1.2. FILE FORMATS USABLE WITH OBITOOLS 7

1.2.4 The fastq sequence format
.. note::

This article uses material from the Wikipedia article
`FASTQ format `
which is released under the
`Creative Commons Attribution-Share-Alike License 3.0 `

fastq format is a text-based format for storing both a biological sequence
(usually nucleotide sequence) and its corresponding quality scores. Both the
sequence letter and quality score are encoded with a single ASCII character for
brevity. It was originally developed at the Wellcome Trust Sanger Institute
to bundle a fasta sequence and its quality data, but has recently become the de
facto standard for storing the output of high throughput sequencing instruments
such as the Illumina Genome Analyzer Illumina. [1]_

1.2.4.1 Format

A fastq file normally uses four lines per sequence.

• Line 1 begins with a ‘@’ character and is followed by a sequence identifier
and an optional description (like a :ref:fasta title line).

• Line 2 is the raw sequence letters.
• Line 3 begins with a ‘+’ character and is optionally followed by the same

sequence identifier (and any description) again.
• Line 4 encodes the quality values for the sequence in Line 2, and must

contain the same number of symbols as letters in the sequence.

A fastq file containing a single sequence might look like this:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

The character ‘!’ represents the lowest quality while ‘~’ is the highest. Here are
the quality value characters in left-to-right increasing order of quality (ASCII):

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

The original Sanger FASTQ files also allowed the sequence and quality strings
to be wrapped (split over multiple lines), but this is generally discouraged as it
can make parsing complicated due to the unfortunate choice of “@” and “+” as
markers (these characters can also occur in the quality string).

1.2.4.2 Variations

1.2.4.2.1 Quality A quality value Q is an integer mapping of p (i.e., the
probability that the corresponding base call is incorrect). Two different equations

8 CHAPTER 1. THE OBITOOLS

have been in use. The first is the standard Sanger variant to assess reliability of
a base call, otherwise known as Phred quality score:

Qsanger = −10 log10 p

The Solexa pipeline (i.e., the software delivered with the Illumina Genome
Analyzer) earlier used a different mapping, encoding the odds p/(1 − p) instead
of the probability p:

Qsolexa-prior to v.1.3 = −10 log10
p

1 − p

Although both mappings are asymptotically identical at higher quality values,
they differ at lower quality levels (i.e., approximately p > 0.05, or equivalently,
Q < 13).

|Relationship between Q and p using the Sanger (red) and Solexa (black) equa-
tions (described above). The vertical dotted line indicates p = 0.05, or equiva-
lently, Q = 13.|

1.2.4.3 Encoding

• Sanger format can encode a Phred quality score from 0 to 93 using ASCII
33 to 126 (although in raw read data the Phred quality score rarely exceeds
60, higher scores are possible in assemblies or read maps).

• Solexa/Illumina 1.0 format can encode a Solexa/Illumina quality score
from -5 to 62 using ASCII 59 to 126 (although in raw read data Solexa
scores from -5 to 40 only are expected)

• Starting with Illumina 1.3 and before Illumina 1.8, the format encoded a
Phred quality score from 0 to 62 using ASCII 64 to 126 (although in raw
read data Phred scores from 0 to 40 only are expected).

• Starting in Illumina 1.5 and before Illumina 1.8, the Phred scores 0 to 2
have a slightly different meaning. The values 0 and 1 are no longer used
and the value 2, encoded by ASCII 66 “B”.

Sequencing Control Software, Version 2.6, Catalog # SY-960-2601, Part #
15009921 Rev. A, November 2009] [http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf\\](http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf){.uri}
(page 30) states the following: If a read ends with a segment of mostly low
quality (Q15 or below), then all of the quality values in the segment are replaced
with a value of 2 (encoded as the letter B in Illumina’s text-based encoding
of quality scores). . . This Q2 indicator does not predict a specific error rate,
but rather indicates that a specific final portion of the read should not be used
in further analyses. Also, the quality score encoded as “B” letter may occur
internally within reads at least as late as pipeline version 1.6, as shown in the
following example:

%5Bhttp://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf/%5D(http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf)%7B.uri%7D

1.3. FILE EXTENSION 9

@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf`feed]`]_Ba_^__[YBBBBBBBBBBRTT\]][]dddd`ddd^dddadd^BBBBBBBBBBBBBBBBBBBBBBBB

An alternative interpretation of this ASCII encoding has been proposed. Also,
in Illumina runs using PhiX controls, the character ‘B’ was observed to represent
an “unknown quality score”. The error rate of ‘B’ reads was roughly 3 phred
scores lower the mean observed score of a given run.

• Starting in Illumina 1.8, the quality scores have basically returned to the
use of the Sanger format (Phred+33).

1.3 File extension
There is no standard file extension for a FASTQ file, but .fq and .fastq, are
commonly used.

1.4 See also
• :ref:fasta

1.5 References
.. [1] Cock et al (2009) The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

.. [2] Illumina Quality Scores, Tobias Mann, Bioinformatics, San Diego, Illumina
1__

.. |Relationship between Q and p using the Sanger (red) and Solexa (black)
equations (described above). The vertical dotted line indicates p = 0.05, or
equivalently, Q Å 13.| image:: Probability metrics.png

See http://en.wikipedia.org/wiki/FASTQ_format

http://en.wikipedia.org/wiki/FASTQ_format

10 CHAPTER 1. THE OBITOOLS

Chapter 2

The OBITools commands

2.1 Specifying the input files to OBITools com-
mands

2.2 Options common to most of the OBITools
commands

2.2.1 Specifying input format
Five sequence formats are accepted for input files. Fasta and Fastq are the
main ones, EMBL and Genbank allow the use of flat files produced by these two
international databases. The last one, ecoPCR, is maintained for compatibility
with previous OBITools and allows to read ecoPCR outputs as sequence files.

• --ecopcr : Read data following the ecoPCR output format.
• --embl Read data following the EMBL flatfile format.
• --genbank Read data following the Genbank flatfile format.

Several encoding schemes have been proposed for quality scores in Fastq format.
Currently, OBITools considers Sanger encoding as the standard. For reasons of
compatibility with older datasets produced with Solexa sequencers, it is possible,
by using the following option, to force the use of the corresponding quality
encoding scheme when reading these older files.

• --solexa Decodes quality string according to the Solexa specification.
(default: false)

2.2.2 Specifying output format
Only two output sequence formats are supported by OBITools, Fasta and Fastq.
Fastq is used when output sequences are associated with quality information.

11

12 CHAPTER 2. THE OBITOOLS COMMANDS

Otherwise, Fasta is the default format. However, it is possible to force the output
format by using one of the following two options. Forcing the use of Fasta results
in the loss of quality information. Conversely, when the Fastq format is forced
with sequences that have no quality data, dummy qualities set to 40 for each
nucleotide are added.

• --fasta-output Read data following the ecoPCR output format.
• --fastq-output Read data following the EMBL flatfile format.

OBITools allows multiple input files to be specified for a single command.

• --no-order When several input files are provided, indicates that there is
no order among them. (default: false)

2.2.3 Format of the annotations in Fasta and Fastq files
OBITools extend the Fasta and Fastq formats by introducing a format for the
title lines of these formats allowing to annotate every sequence. While the
previous version of OBITools used an ad-hoc format for these annotation, this
new version introduce the usage of the standard JSON format to store them.

On input, OBITools automatically recognize the format of the annotations,
but two options allows to force the parsing following one of them. You should
normally not need to use these options.

• --input-OBI-header FASTA/FASTQ title line annotations follow OBI
format. (default: false)

• --input-json-header FASTA/FASTQ title line annotations follow json
format. (default: false)

On output, by default annotation are formatted using the new JSON format.
For compatibility with previous version of OBITools and with external scripts
and software, it is possible to force the usage of the previous OBITools format.

• --output-OBI-header|-O output FASTA/FASTQ title line annotations
follow OBI format. (default: false)

• --output-json-header output FASTA/FASTQ title line annotations fol-
low json format. (default: false)

2.2.3.1 System related options

• --debug (default: false)
• --help\|-h\|-? (default: false)
• --max-cpu <int> Number of parallele threads computing the result (de-

fault: 10)
• --workers\|-w <int> Number of parallele threads computing the result

(default: 9)

2.3. METABARCODE DESIGN AND QUALITY ASSESSMENT 13

2.3 Metabarcode design and quality assessment
2.3.0.1 obipcr

Replace the ecoPCR original OBITools

2.4 File format conversions
2.4.0.1 obiconvert

2.5 Sequence annotations
2.5.0.1 obitag

2.6 Computations on sequences
2.6.1 obipairing

Replace the illuminapairedends original OBITools

2.6.1.1 obimultiplex

Replace the ngsfilter original OBITools

2.6.1.2 obicomplement

2.6.1.3 obiclean

2.6.1.4 obiuniq

2.7 Sequence sampling and filtering
2.7.0.1 obigrep

2.7.1 Utilities
2.7.1.1 obicount

2.7.1.2 obidistribute

2.7.1.3 obifind

Replace the ecofind original OBITools.

14 CHAPTER 2. THE OBITOOLS COMMANDS

Chapter 3

Reference documentation
for the GO OBITools library

3.1 BioSequence
The BioSequence class is used to represent biological sequences. It allows for
storing : - the sequence itself as a []byte - the sequencing quality score as a
[]byte if needed - an identifier as a string - a definition as a string - a set of
(key, value) pairs in a map[sting]interface{}

BioSequence is defined in the obiseq module and is included using the code
import (

"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"
)

3.1.1 Creating new instances
To create new instance, use

• MakeBioSequence(id string, sequence []byte, definition
string) obiseq.BioSequence

• NewBioSequence(id string, sequence []byte, definition string)
*obiseq.BioSequence

Both create a BioSequence instance, but when the first one returns the in-
stance, the second returns a pointer on the new instance. Two other functions
MakeEmptyBioSequence, and NewEmptyBioSequence do the same job but pro-
vide an uninitialized objects.

• id parameters corresponds to the unique identifier of the sequence. It mist
be a string constituted of a single word (not containing any space).

15

16CHAPTER 3. REFERENCE DOCUMENTATION FOR THE GO OBITOOLS LIBRARY

• sequence is the DNA sequence itself, provided as a byte array ([]byte).
• definition is a string, potentially empty, but usualy containing a sen-

tence explaining what is that sequence.
import (

"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"
)

func main() {
myseq := obiseq.NewBiosequence(

"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

}

When formated as fasta the parameters correspond to the following schema

>id definition containing potentially several words
sequence

3.1.2 End of life of a BioSequence instance
When a BioSequence instance is no more used, it is normally taken in charge
by the GO garbage collector. You can if you want call the Recycle method on
the instance to store the allocated memory element in a pool to limit allocation
effort when many sequences are manipulated.

3.1.3 Accessing to the elements of a sequence
The different elements of an obiseq.BioSequence must be accessed using a set
of methods. For the three main elements provided during the creation of a new
instance methodes are :

• Id() string
• Sequence() []byte
• Definition() string

It exists pending method to change the value of these elements

• SetId(id string)
• SetSequence(sequence []byte)
• SetDefinition(definition string)

import (
"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

3.1. BIOSEQUENCE 17

func main() {
myseq := obiseq.NewBiosequence(

"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

fmt.Println(myseq.Id())
myseq.SetId("SPE01_0001")
fmt.Println(myseq.Id())

}

3.1.3.1 Different ways for accessing an editing the sequence

If Sequence()and SetSequence(sequence []byte) methods are the basic ones,
several other methods exist.

• String() string return the sequence directly converted to a string
instance.

• The Write method family allows for extending an existing sequence follow-
ing the buffer protocol.

– Write(data []byte) (int, error) allows for appending a byte ar-
ray on 3’ end of the sequence.

– WriteString(data string) (int, error) allows for appending a
string.

– WriteByte(data byte) error allows for appending a single byte.

The Clear method empties the sequence buffer.
import (

"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewEmptyBiosequence()

myseq.WriteString("accc")
myseq.WriteByte(byte('c'))
fmt.Println(myseq.String())

}

3.1.3.2 Sequence quality scores

Sequence quality scores cannot be initialized at the time of instance creation.
You must use dedicated methods to add quality scores to a sequence.

18CHAPTER 3. REFERENCE DOCUMENTATION FOR THE GO OBITOOLS LIBRARY

To be coherent the length of both the DNA sequence and que quality score
sequence must be equal. But assessment of this constraint is realized. It is of
the programmer responsability to check that invariant.

While accessing to the quality scores relies on the method Quality() []byte,
setting the quality need to call one of the following method. They run similarly
to their sequence dedicated conterpart.

• SetQualities(qualities Quality)
• WriteQualities(data []byte) (int, error)
• WriteByteQualities(data byte) error

In a way analogous to the Clear method, ClearQualities() empties the se-
quence of quality scores.

Chapter 4

Annexes

4.0.1 Sequence attributes
4.0.1.1 Reserved sequence attributes

4.0.1.1.1 ali_dir

4.0.1.1.1.1 Type : string The attribute can contain 2 string values "left"
or "right".

4.0.1.1.1.2 Set by the obipairing tool The alignment generated by obi-
pairing is a 3’-end gap free algorithm. Two cases can occur when aligning the
forward and reverse reads. If the barcode is long enough, both the reads overlap
only on their 3’ ends. In such case, the alignment direction ali_dir is set to
left. If the barcode is shorter than the read length, the paired reads overlap by
their 5’ ends, and the complete barcode is sequenced by both the reads. In that
later case, ali_dir is set to right.

4.0.1.1.2 ali_length

4.0.1.1.2.1 Set by the obipairing tool Length of the aligned parts when
merging forward and reverse reads

4.0.1.1.3 count : the number of sequence occurrences

4.0.1.1.3.1 Set by the obiuniq tool The count attribute indicates how-
many strictly identical sequences have been merged in a single record. It contains
an integer value. If it is absent this means that the sequence record represents a
single occurrence of the sequence.

19

20 CHAPTER 4. ANNEXES

4.0.1.1.3.2 Getter : method Count() The Count() method allows to
access to the count attribute as an integer value. If the count attribute is not
defined for the given sequence, the value 1 is returned

4.0.1.1.4 merged_*

4.0.1.1.4.1 Type : map[string]int

4.0.1.1.4.2 Set by the obiuniq tool The -m option of the obiuniq tools
allows for keeping track of the distribution of the values stored in given attribute of
interest. Often this option is used to summarise distribution of a sequence variant
accross samples when obiuniq is run after running obimultiplex. The actual name
of the attribute depends on the name of the monitored attribute. If -m option is
used with the attribute sample, then this attribute names merged_sample.

4.0.1.1.5 mode

4.0.1.1.5.1 Set by the obipairing tool obitag_ref_index

4.0.1.1.5.2 Set by the obirefidx tool. It resumes to which taxonomic
annotation a match to that sequence must lead according to the number of
differences existing between the query sequence and the reference sequence having
that tag.

4.0.1.1.5.3 Getter : method Count()

4.0.1.1.6 pairing_mismatches

4.0.1.1.6.1 Set by the obipairing tool

4.0.1.1.7 score

4.0.1.1.7.1 Set by the obipairing tool

4.0.1.1.8 score_norm

4.0.1.1.8.1 Set by the obipairing tool

	The OBITools
	Aims of OBITools
	File formats usable with OBITools
	File extension
	See also
	References

	The OBITools commands
	Specifying the input files to OBITools commands
	Options common to most of the OBITools commands
	Metabarcode design and quality assessment
	File format conversions
	Sequence annotations
	Computations on sequences
	Sequence sampling and filtering

	Reference documentation for the GO OBITools library
	BioSequence

	Annexes

