
OBITools V4

Eric Coissac

1/17/23

Table of contents

Preface 4

1 The OBITools 5
1.1 Aims of OBITools . 5
1.2 File formats usable with OBITools . 5

1.2.1 The sequence files . 5
1.2.2 The IUPAC Code . 5
1.2.3 The fasta format . 6
1.2.4 The fastq sequence format . 7

1.3 File extension . 9
1.4 See also . 9
1.5 References . 9

2 The OBITools commands 10
2.1 Specifying the input files to OBITools commands 10
2.2 Options common to most of the OBITools commands 10

2.2.1 Specifying input format . 10
2.2.2 Specifying output format . 10
2.2.3 Format of the annotations in Fasta and Fastq files 11

2.3 OBITools expression language . 12
2.3.1 Variables usable in the expression . 12
2.3.2 Function defined in the language . 12
2.3.3 Accessing to the sequence annotations 12

2.4 Metabarcode design and quality assessment . 12
2.5 File format conversions . 13
2.6 Sequence annotations . 13
2.7 Computations on sequences . 13

2.7.1 obipairing . 13
2.8 Sequence sampling and filtering . 13

2.8.1 Utilities . 13

3 The GO OBITools library 14
3.1 BioSequence . 14

3.1.1 Creating new instances . 14
3.1.2 End of life of a BioSequence instance 15

2

3.1.3 Accessing to the elements of a sequence 15

4 Annexes 18
4.0.1 Sequence attributes . 18

References 21

3

Preface

The first version of OBITools started to be developed in 2005. This was at the beginning of
the DNA metabarcoding story at the Laboratoire d’Ecologie Alpine (LECA) in Grenoble. At
that time, with Pierre Taberlet and François Pompanon, we were thinking about the poten-
tial of this new methodology under development. PIerre and François developed more the
laboratory methods, while I was thinking more about the tools for analysing the sequences
produced. Two ideas were behind this development. I wanted something modular, and some-
thing easy to extend. To achieve the first goal, I decided to implement obitools as a suite of
unix commands mimicking the classic unix commands but dedicated to sequence files. The
basic unix commands are very useful for automatically manipulating, parsing and editing text
files. They work in flow, line by line on the input text. The result is a new text file that can
be used as input for the next command. Such a design makes it possible to quickly develop
a text processing pipeline by chaining simple elementary operations. The OBITools are the
exact counterpart of these basic Unix commands, but the basic information they process is a
sequence (potentially spanning several lines of text), not a single line of text. Most OBITools
consume sequence files and produce sequence files. Thus, the principles of chaining and mod-
ularity are respected. In order to be able to easily extend the OBITools to keep up with our
evolving ideas about processing DNA metabarcoding data, it was decided to develop them
using an interpreted language: Python. Python 2, the version available at the time, allowed
us to develop the OBITools efficiently. When parts of the algorithms were computationally
demanding, they were implemented in C and linked to the Python code. Even though Python
is not the most efficient language available, even though computers were not as powerful as
they are today, the size of the data we could produce using 454 sequencers or early solexa
machines was small enough to be processed in a reasonable time.

4

1 The OBITools

1.1 Aims of OBITools

1.2 File formats usable with OBITools

1.2.1 The sequence files

Sequences can be stored following various format. OBITools knows some of them. The central
formats for sequence files manipulated by OBITools scripts are the fasta and fastq format.
OBITools extends the both these formats by specifying a syntax to include in the definition line
data qualifying the sequence. All file formats use the IUPAC code for encoding nucleotides.

1.2.2 The IUPAC Code

The International Union of Pure and Applied Chemistry (IUPAC_) defined the standard code
for representing protein or DNA sequences.

1.2.2.1 Nucleic IUPAC Code

Code Nucleotide
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil
R Purine (A or G)
Y Pyrimidine (C, T, or U)
M C or A
K T, U, or G
W T, U, or A
S C or G
B C, T, U, or G (not A)

5

Code Nucleotide
D A, T, U, or G (not C)
H A, T, U, or C (not G)
V A, C, or G (not T, not U)
N Any base (A, C, G, T, or U)

1.2.3 The fasta format

The fasta format is certainly the most widely used sequence file format. This is certainly
due to its great simplicity. It was originally created for the Lipman and Pearson FASTA
program. OBITools use in more of the classical :ref:fasta format an :ref:extended version
of this format where structured data are included in the title line.

In fasta format a sequence is represented by a title line beginning with a > character and the
sequences by itself following the :doc:iupac code. The sequence is usually split other severals
lines of the same length (expect for the last one)

>my_sequence this is my pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

This is no special format for the title line excepting that this line should be unique. Usually
the first word following the > character is considered as the sequence identifier. The end of the
title line corresponding to a description of the sequence. Several sequences can be concatenated
in a same file. The description of the next sequence is just pasted at the end of the record of
the previous one

>sequence_A this is my first pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_B this is my second pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_C this is my third pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

6

http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Citation
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Citation

1.2.4 The fastq sequence format1

fastq format is a text-based format for storing both a biological sequence (usually nucleotide
sequence) and its corresponding quality scores. Both the sequence letter and quality score
are encoded with a single ASCII character for brevity. It was originally developed at the
Wellcome Trust Sanger Institute to bundle a fasta sequence and its quality data, but has
recently become the de facto standard for storing the output of high throughput sequencing
instruments such as the Illumina Genome Analyzer Illumina (Cock et al. 2010) .

A fastq file normally uses four lines per sequence.

• Line 1 begins with a ‘@’ character and is followed by a sequence identifier and an optional
description (like a :ref:fasta title line).

• Line 2 is the raw sequence letters.
• Line 3 begins with a ‘+’ character and is optionally followed by the same sequence

identifier (and any description) again.
• Line 4 encodes the quality values for the sequence in Line 2, and must contain the same

number of symbols as letters in the sequence.

A fastq file containing a single sequence might look like this:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

The character ‘!’ represents the lowest quality while ‘~’ is the highest. Here are the quality
value characters in left-to-right increasing order of quality (ASCII):

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

The original Sanger FASTQ files also allowed the sequence and quality strings to be wrapped
(split over multiple lines), but this is generally discouraged as it can make parsing complicated
due to the unfortunate choice of “@” and “+” as markers (these characters can also occur in
the quality string).

1This article uses material from the Wikipedia article FASTQ format which is released under the Creative
Commons Attribution-Share-Alike License 3.0

7

http://en.wikipedia.org/wiki/FASTQ_format

1.2.4.1 Variations

1.2.4.1.1 Quality

A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base
call is incorrect). Two different equations have been in use. The first is the standard Sanger
variant to assess reliability of a base call, otherwise known as Phred quality score:

𝑄sanger = −10 log10 𝑝

The Solexa pipeline (i.e., the software delivered with the Illumina Genome Analyzer) earlier
used a different mapping, encoding the odds p/(1 − p) instead of the probability p:

𝑄solexa-prior to v.1.3 = −10 log10
𝑝

1 − 𝑝

Although both mappings are asymptotically identical at higher quality values, they differ at
lower quality levels (i.e., approximately p > 0.05, or equivalently, Q < 13).

|Relationship between Q and p using the Sanger (red) and Solexa (black) equations (described
above). The vertical dotted line indicates p = 0.05, or equivalently, 𝑄 = 13.|

1.2.4.2 Encoding

• Sanger format can encode a Phred quality score from 0 to 93 using ASCII 33 to 126
(although in raw read data the Phred quality score rarely exceeds 60, higher scores are
possible in assemblies or read maps).

• Solexa/Illumina 1.0 format can encode a Solexa/Illumina quality score from -5 to 62
using ASCII 59 to 126 (although in raw read data Solexa scores from -5 to 40 only are
expected)

• Starting with Illumina 1.3 and before Illumina 1.8, the format encoded a Phred quality
score from 0 to 62 using ASCII 64 to 126 (although in raw read data Phred scores from
0 to 40 only are expected).

• Starting in Illumina 1.5 and before Illumina 1.8, the Phred scores 0 to 2 have a slightly
different meaning. The values 0 and 1 are no longer used and the value 2, encoded by
ASCII 66 “B”.

Sequencing Control Software, Version 2.6, Catalog # SY-960-2601, Part # 15009921 Rev. A,
November 2009] [http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf\\](http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf){.uri}
(page 30) states the following: If a read ends with a segment of mostly low quality (Q15 or
below), then all of the quality values in the segment are replaced with a value of 2 (encoded
as the letter B in Illumina’s text-based encoding of quality scores)… This Q2 indicator does
not predict a specific error rate, but rather indicates that a specific final portion of the read

8

%5Bhttp://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf%5D(http://watson.nci.nih.gov/solexa/Using_SCSv2.6_15009921_A.pdf)%7B.uri%7D

should not be used in further analyses. Also, the quality score encoded as “B” letter may
occur internally within reads at least as late as pipeline version 1.6, as shown in the following
example:

@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf`feed]`]_Ba_^__[YBBBBBBBBBBRTT\]][]dddd`ddd^dddadd^BBBBBBBBBBBBBBBBBBBBBBBB

An alternative interpretation of this ASCII encoding has been proposed. Also, in Illumina
runs using PhiX controls, the character ‘B’ was observed to represent an “unknown quality
score”. The error rate of ‘B’ reads was roughly 3 phred scores lower the mean observed score
of a given run.

• Starting in Illumina 1.8, the quality scores have basically returned to the use of the
Sanger format (Phred+33).

1.3 File extension

There is no standard file extension for a FASTQ file, but .fq and .fastq, are commonly used.

1.4 See also

• :ref:fasta

1.5 References

.. [1] Cock et al (2009) The Sanger FASTQ file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

.. [2] Illumina Quality Scores, Tobias Mann, Bioinformatics, San Diego, Illumina 1__

.. |Relationship between Q and p using the Sanger (red) and Solexa (black) equations (de-
scribed above). The vertical dotted line indicates p = 0.05, or equivalently, Q Å 13.| image::
Probability metrics.png

See http://en.wikipedia.org/wiki/FASTQ_format

9

http://en.wikipedia.org/wiki/FASTQ_format

2 The OBITools commands

2.1 Specifying the input files to OBITools commands

2.2 Options common to most of the OBITools commands

2.2.1 Specifying input format

Five sequence formats are accepted for input files. Fasta and Fastq are the main ones, EMBL
and Genbank allow the use of flat files produced by these two international databases. The
last one, ecoPCR, is maintained for compatibility with previous OBITools and allows to read
ecoPCR outputs as sequence files.

• --ecopcr : Read data following the ecoPCR output format.
• --embl Read data following the EMBL flatfile format.
• --genbank Read data following the Genbank flatfile format.

Several encoding schemes have been proposed for quality scores in Fastq format. Currently,
OBITools considers Sanger encoding as the standard. For reasons of compatibility with older
datasets produced with Solexa sequencers, it is possible, by using the following option, to force
the use of the corresponding quality encoding scheme when reading these older files.

• --solexa Decodes quality string according to the Solexa specification. (default: false)

2.2.2 Specifying output format

Only two output sequence formats are supported by OBITools, Fasta and Fastq. Fastq is
used when output sequences are associated with quality information. Otherwise, Fasta is the
default format. However, it is possible to force the output format by using one of the following
two options. Forcing the use of Fasta results in the loss of quality information. Conversely,
when the Fastq format is forced with sequences that have no quality data, dummy qualities
set to 40 for each nucleotide are added.

• --fasta-output Read data following the ecoPCR output format.
• --fastq-output Read data following the EMBL flatfile format.

10

OBITools allows multiple input files to be specified for a single command.

• --no-order When several input files are provided, indicates that there is no order among
them. (default: false)

2.2.3 Format of the annotations in Fasta and Fastq files

OBITools extend the Fasta and Fastq formats by introducing a format for the title lines of these
formats allowing to annotate every sequence. While the previous version of OBITools used
an ad-hoc format for these annotation, this new version introduce the usage of the standard
JSON format to store them.

On input, OBITools automatically recognize the format of the annotations, but two options
allows to force the parsing following one of them. You should normally not need to use these
options.

• --input-OBI-header FASTA/FASTQ title line annotations follow OBI format. (default:
false)

• --input-json-header FASTA/FASTQ title line annotations follow json format. (de-
fault: false)

On output, by default annotation are formatted using the new JSON format. For compatibility
with previous version of OBITools and with external scripts and software, it is possible to force
the usage of the previous OBITools format.

• --output-OBI-header|-O output FASTA/FASTQ title line annotations follow OBI for-
mat. (default: false)

• --output-json-header output FASTA/FASTQ title line annotations follow json format.
(default: false)

2.2.3.1 System related options

• --debug (default: false)
• --help\|-h\|-? (default: false)
• --max-cpu <int> Number of parallele threads computing the result (default: 10)
• --workers\|-w <int> Number of parallele threads computing the result (default: 9)

11

2.3 OBITools expression language

Several OBITools (e.g. obigrep, obiannotate) allow the user to specify some simple expressions
to compute values or define predicates. This expressions are parsed and evaluated using the
gval go package, which allows for evaluating go-Like expression.

2.3.1 Variables usable in the expression

2.3.1.1 sequence

sequence is the sequence object on which the expression is evaluated

2.3.1.2 annotation

2.3.2 Function defined in the language

2.3.2.1 len

2.3.2.2 ismap

2.3.2.3 hasattribute

2.3.2.4 min

2.3.2.5 max

2.3.3 Accessing to the sequence annotations

2.4 Metabarcode design and quality assessment

2.4.0.1 obipcr

Replace the ecoPCR original OBITools

12

https://pkg.go.dev/github.com/PaesslerAG/gval

2.5 File format conversions

2.5.0.1 obiconvert

2.6 Sequence annotations

2.6.0.1 obitag

2.7 Computations on sequences

2.7.1 obipairing

Replace the illuminapairedends original OBITools

2.7.1.1 obimultiplex

Replace the ngsfilter original OBITools

2.7.1.2 obicomplement

2.7.1.3 obiclean

2.7.1.4 obiuniq

2.8 Sequence sampling and filtering

2.8.0.1 obigrep

2.8.1 Utilities

2.8.1.1 obicount

2.8.1.2 obidistribute

2.8.1.3 obifind

Replace the ecofind original OBITools.

13

3 The GO OBITools library

3.1 BioSequence

The BioSequence class is used to represent biological sequences. It allows for storing : - the
sequence itself as a []byte - the sequencing quality score as a []byte if needed - an identifier as
a string - a definition as a string - a set of (key, value) pairs in a map[sting]interface{}

BioSequence is defined in the obiseq module and is included using the code

import (
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

3.1.1 Creating new instances

To create new instance, use

• MakeBioSequence(id string, sequence []byte, definition string) obiseq.BioSequence
• NewBioSequence(id string, sequence []byte, definition string) *obiseq.BioSequence

Both create a BioSequence instance, but when the first one returns the instance, the second
returns a pointer on the new instance. Two other functions MakeEmptyBioSequence, and
NewEmptyBioSequence do the same job but provide an uninitialized objects.

• id parameters corresponds to the unique identifier of the sequence. It mist be a string
constituted of a single word (not containing any space).

• sequence is the DNA sequence itself, provided as a byte array ([]byte).
• definition is a string, potentially empty, but usualy containing a sentence explaining

what is that sequence.

import (
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {

14

myseq := obiseq.NewBiosequence(
"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

}

When formated as fasta the parameters correspond to the following schema

>id definition containing potentially several words
sequence

3.1.2 End of life of a BioSequence instance

When a BioSequence instance is no more used, it is normally taken in charge by the GO
garbage collector. You can if you want call the Recycle method on the instance to store
the allocated memory element in a pool to limit allocation effort when many sequences are
manipulated.

3.1.3 Accessing to the elements of a sequence

The different elements of an obiseq.BioSequence must be accessed using a set of methods.
For the three main elements provided during the creation of a new instance methodes are :

• Id() string
• Sequence() []byte
• Definition() string

It exists pending method to change the value of these elements

• SetId(id string)
• SetSequence(sequence []byte)
• SetDefinition(definition string)

import (
"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewBiosequence(

15

"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

fmt.Println(myseq.Id())
myseq.SetId("SPE01_0001")
fmt.Println(myseq.Id())

}

3.1.3.1 Different ways for accessing an editing the sequence

If Sequence()and SetSequence(sequence []byte) methods are the basic ones, several other
methods exist.

• String() string return the sequence directly converted to a string instance.
• The Write method family allows for extending an existing sequence following the buffer

protocol.

– Write(data []byte) (int, error) allows for appending a byte array on 3’ end
of the sequence.

– WriteString(data string) (int, error) allows for appending a string.
– WriteByte(data byte) error allows for appending a single byte.

The Clear method empties the sequence buffer.

import (
"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewEmptyBiosequence()

myseq.WriteString("accc")
myseq.WriteByte(byte('c'))
fmt.Println(myseq.String())

}

16

3.1.3.2 Sequence quality scores

Sequence quality scores cannot be initialized at the time of instance creation. You must use
dedicated methods to add quality scores to a sequence.

To be coherent the length of both the DNA sequence and que quality score sequence must be
equal. But assessment of this constraint is realized. It is of the programmer responsability to
check that invariant.

While accessing to the quality scores relies on the method Quality() []byte, setting the
quality need to call one of the following method. They run similarly to their sequence dedicated
conterpart.

• SetQualities(qualities Quality)
• WriteQualities(data []byte) (int, error)
• WriteByteQualities(data byte) error

In a way analogous to the Clear method, ClearQualities() empties the sequence of quality
scores.

17

4 Annexes

4.0.1 Sequence attributes

4.0.1.1 Reserved sequence attributes

4.0.1.1.1 ali_dir

4.0.1.1.1.1 Type : string

The attribute can contain 2 string values "left" or "right".

4.0.1.1.1.2 Set by the obipairing tool

The alignment generated by obipairing is a 3’-end gap free algorithm. Two cases can occur
when aligning the forward and reverse reads. If the barcode is long enough, both the reads
overlap only on their 3’ ends. In such case, the alignment direction ali_dir is set to left. If
the barcode is shorter than the read length, the paired reads overlap by their 5’ ends, and the
complete barcode is sequenced by both the reads. In that later case, ali_dir is set to right.

4.0.1.1.2 ali_length

4.0.1.1.2.1 Set by the obipairing tool

Length of the aligned parts when merging forward and reverse reads

4.0.1.1.3 count : the number of sequence occurrences

4.0.1.1.3.1 Set by the obiuniq tool

The count attribute indicates how-many strictly identical sequences have been merged in a
single record. It contains an integer value. If it is absent this means that the sequence record
represents a single occurrence of the sequence.

18

4.0.1.1.3.2 Getter : method Count()

The Count() method allows to access to the count attribute as an integer value. If the count
attribute is not defined for the given sequence, the value 1 is returned

4.0.1.1.4 merged_*

4.0.1.1.4.1 Type : map[string]int

4.0.1.1.4.2 Set by the obiuniq tool

The -m option of the obiuniq tools allows for keeping track of the distribution of the values
stored in given attribute of interest. Often this option is used to summarise distribution of a
sequence variant accross samples when obiuniq is run after running obimultiplex. The actual
name of the attribute depends on the name of the monitored attribute. If -m option is used
with the attribute sample, then this attribute names merged_sample.

4.0.1.1.5 mode

4.0.1.1.5.1 Set by the obipairing tool

obitag_ref_index

4.0.1.1.5.2 Set by the obirefidx tool.

It resumes to which taxonomic annotation a match to that sequence must lead according to the
number of differences existing between the query sequence and the reference sequence having
that tag.

4.0.1.1.5.3 Getter : method Count()

4.0.1.1.6 pairing_mismatches

4.0.1.1.6.1 Set by the obipairing tool

4.0.1.1.7 score

4.0.1.1.7.1 Set by the obipairing tool

19

4.0.1.1.8 score_norm

4.0.1.1.8.1 Set by the obipairing tool

20

References
Cock, Peter JA, Christopher J Fields, Naohisa Goto, Michael L Heuer, and Peter M Rice.

2010. “The Sanger FASTQ File Format for Sequences with Quality Scores, and the
Solexa/Illumina FASTQ Variants.” Nucleic Acids Research 38 (6): 1767–71.

21

	Preface
	The OBITools
	Aims of OBITools
	File formats usable with OBITools
	The sequence files
	The IUPAC Code
	The fasta format
	The fastq sequence format

	File extension
	See also
	References

	The OBITools commands
	Specifying the input files to OBITools commands
	Options common to most of the OBITools commands
	Specifying input format
	Specifying output format
	Format of the annotations in Fasta and Fastq files

	OBITools expression language
	Variables usable in the expression
	Function defined in the language
	Accessing to the sequence annotations

	Metabarcode design and quality assessment
	File format conversions
	Sequence annotations
	Computations on sequences
	obipairing

	Sequence sampling and filtering
	Utilities

	The GO OBITools library
	BioSequence
	Creating new instances
	End of life of a BioSequence instance
	Accessing to the elements of a sequence

	Annexes
	Sequence attributes

	References

