
OBITools V4

Eric Coissac

1/17/23

Table of contents

Preface 5

I The OBITools 7
Aims of OBITools . 8

1 Installation of the obitools 9
1.1 Availability of the OBITools . 9
1.2 Prerequisites . 9
1.3 Installation with the install script . 9
1.4 Compilation from sources . 9

2 File formats usable with OBITools 10

3 The DNA sequence data 11
3.1 The IUPAC Code . 11
3.2 The fasta sequence format . 12
3.3 The fastq sequence format . 13

Sequence quality scores . 14
3.4 File extension . 16

4 OBITools V4 Tutorial 17
4.1 Wolves’ diet based on DNA metabarcoding . 17
4.2 Step by step analysis . 18

4.2.1 Recover full sequence reads from forward and reverse partial reads . . . 18
4.2.2 Remove unaligned sequence records . 18
4.2.3 Assign each sequence record to the corresponding sample/marker com-

bination . 19
4.2.4 Dereplicate reads into uniq sequences 20
4.2.5 Denoise the sequence dataset . 21
4.2.6 Taxonomic assignment of sequences . 25
4.2.7 Assign each sequence to a taxon . 27
4.2.8 Generate the final result table . 28
4.2.9 Looking at the data in R . 29

2

II The OBITools V4 commands 31

5 Specifying the data input to OBITools commands 32
5.1 Specifying input format . 32

6 Controling OBITools outputs 33
6.1 Specifying output format . 33
6.2 The Fasta and Fastq annotations format . 33

7 Options common to most of the OBITools commands 35
7.1 Helpful options . 35
7.2 System related options . 35

8 OBITools expression language 37
8.1 Variables usable in the expression . 37
8.2 Function defined in the language . 37

Instrospection functions . 37
Cast functions . 37
String related functions . 38
Condition function . 38
8.2.1 Sequence analysis related function . 38

8.3 Accessing to the sequence annotations . 38

9 Metabarcode design and quality assessment 40
9.1 obipcr . 40

10 File format conversions 41
10.1 obiconvert . 41

11 Sequence annotations 42
11.1 obiannotate . 42
11.2 obitag . 42
11.3 obitagpcr . 42

12 Computations on sequences 43
12.1 obipairing . 43

Alignment procedure . 43
The scoring system . 43

12.2 obimultiplex . 45
12.3 obicomplement . 45
12.4 obiclean . 45
12.5 obiuniq . 45

3

13 Sequence sampling and filtering 47
13.1 obigrep – filters sequence files according to numerous conditions 47

13.1.1 The options usable with obigrep . 47

14 Utilities 49
14.1 obicount . 49
14.2 obidistribute . 49
14.3 obifind . 49

III The GO OBITools library 50
BioSequence . 51

Creating new instances . 51
End of life of a BioSequence instance . 52
Accessing to the elements of a sequence . 52
The annotations of a sequence . 54

The sequence iterator . 54
Basic usage of a sequence iterator . 55
The Pipable functions . 55
The Teeable functions . 55

Appendices 55

A Annexes 56
A.1 Sequence attributes . 56

References 59

4

Preface

The first version of OBITools started to be developed in 2005. This was at the beginning of
the DNA metabarcoding story at the Laboratoire d’Ecologie Alpine (LECA) in Grenoble. At
that time, with Pierre Taberlet and François Pompanon, we were thinking about the poten-
tial of this new methodology under development. PIerre and François developed more the
laboratory methods, while I was thinking more about the tools for analysing the sequences
produced. Two ideas were behind this development. I wanted something modular, and some-
thing easy to extend. To achieve the first goal, I decided to implement obitools as a suite of
unix commands mimicking the classic unix commands but dedicated to sequence files. The
basic unix commands are very useful for automatically manipulating, parsing and editing text
files. They work in flow, line by line on the input text. The result is a new text file that can
be used as input for the next command. Such a design makes it possible to quickly develop
a text processing pipeline by chaining simple elementary operations. The OBITools are the
exact counterpart of these basic Unix commands, but the basic information they process is a
sequence (potentially spanning several lines of text), not a single line of text. Most OBITools
consume sequence files and produce sequence files. Thus, the principles of chaining and mod-
ularity are respected. In order to be able to easily extend the OBITools to keep up with our
evolving ideas about processing DNA metabarcoding data, it was decided to develop them
using an interpreted language: Python. Python 2, the version available at the time, allowed
us to develop the OBITools efficiently. When parts of the algorithms were computationally
demanding, they were implemented in C and linked to the Python code. Even though Python
is not the most efficient language available, even though computers were not as powerful as
they are today, the size of the data we could produce using 454 sequencers or early solexa
machines was small enough to be processed in a reasonable time.

The first public version of obitools was OBITools2 (Boyer et al. 2016), this was actually a
cleaned up and documented version of OBITools that had been running at LECA for years
and was not really distributed except to a few collaborators. This is where OBITools started
its public life from then on. The DNA metabarcoding spring schools provided and still provide
user training every year. But OBITools2 soon suffered from two limitations: it was developed
in Python2, which was increasingly abandoned in favour of Python3, and the data size kept
increasing with the new illumina machines. Python’s intrinsic slowness coupled with the
increasing size of the datasets made OBITools computation times increasingly long. The
abandonment of all maintenance of Python2 by its developers also imposed the need for a new
version of OBITools.

5

https://metabarcoding.org/obitools

OBITools3 was the first response to this crisis. Developed and maintained by Céline Mercier,
OBITools3 attempted to address several limitations of OBITools2. It is a complete new code,
mainly developed in Python3, with most of the lower layer code written in C for efficiency.
OBITools3 has also abandoned text files for binary files for the same reason of efficiency. They
have been replaced by a database structure that keeps track of every operation performed on
the data.

Here we present OBITools4 which can be seen as a return to the origins of OBITools. While
OBITools3 offered traceability of analyses, which is in line with the concept of open science,
and faster execution, OBITools2 was more versatile and not only usable for the analysis of
DNA metabarcoding data. OBITools4 is the third full implementation of OBITools. The idea
behind this new version is to go back to the original design of OBITools which ran on text
files containing sequences, like the classic Unix commands, but running at least as fast as
OBITools3 and taking advantage of the multicore architecture of all modern laptops. For this,
the idea of relying on an interpreted language was abandoned. The OBITools4 are now fully
implemented in the GO language with the exception of a few small pieces of specific code
already implemented very efficiently in C. OBITools4 also implement a new format for the
annotations inserted in the header of every sequences. Rather tha relying on a format specific
to OBITools, by default OBITools4 use the JSON format. This simplifies the writing of parsers
in any languages, and thus allows obitools to easiestly interact with other software.

6

https://metabarcoding.org/obitools3
https://www.celine-mercier.info
https://go.dev
https://www.json.org

Part I

The OBITools

7

The OBITools4 are programs specifically designed for analyzing NGS data in a DNA metabar-
coding context, taking into account taxonomic information. It is distributed as an open source
software available on the following website: http://metabarcoding.org/obitools4.

Aims of OBITools

DNA metabarcoding is an efficient approach for biodiversity studies (Taberlet et al. 2012).
Originally mainly developed by microbiologists (e.g. Sogin et al. 2006), it is now widely used
for plants (e.g. Sønstebø et al. 2010; Yoccoz et al. 2012; Parducci et al. 2012) and animals
from meiofauna (e.g. Chariton et al. 2010; Baldwin et al. 2013) to larger organisms (e.g.
Andersen et al. 2012; Thomsen et al. 2012). Interestingly, this method is not limited to sensu
stricto biodiversity surveys, but it can also be implemented in other ecological contexts such
as for herbivore (e.g. Valentini et al. 2009; Kowalczyk et al. 2011) or carnivore (e.g. Deagle,
Kirkwood, and Jarman 2009; Shehzad et al. 2012) diet analyses.

Whatever the biological question under consideration, the DNA metabarcoding methodology
relies heavily on next-generation sequencing (NGS), and generates considerable numbers of
DNA sequence reads (typically million of reads). Manipulation of such large datasets requires
dedicated programs usually running on a Unix system. Unix is an operating system, whose
first version was created during the sixties. Since its early stages, it is dedicated to scientific
computing and includes a large set of simple tools to efficiently process text files. Most of
those programs can be viewed as filters extracting information from a text file to create a
new text file. These programs process text files as streams, line per line, therefore allowing
computation on a huge dataset without requiring a large memory. Unix programs usually
print their results to their standard output (stdout), which by default is the terminal, so the
results can be examined on screen. The main philosophy of the Unix environment is to allow
easy redirection of the stdout either to a file, for saving the results, or to the standard input
(stdin) of a second program thus allowing to easily create complex processing from simple base
commands. Access to Unix computers is increasingly easier for scientists nowadays. Indeed,
the Linux operating system, an open source version of Unix, can be freely installed on every
PC machine and the MacOS operating system, running on Apple computers, is also a Unix
system. The OBITools programs imitate Unix standard programs because they usually act as
filters, reading their data from text files or the stdin and writing their results to the stdout.
The main difference with classical Unix programs is that text files are not analyzed line per
line but sequence record per sequence record (see below for a detailed description of a sequence
record). Compared to packages for similar purposes like mothur (Schloss et al. 2009) or QIIME
(Caporaso et al. 2010), the OBITools mainly rely on filtering and sorting algorithms. This
allows users to set up versatile data analysis pipelines (Figure 1), adjustable to the broad range
of DNA metabarcoding applications. The innovation of the OBITools is their ability to take
into account the taxonomic annotations, ultimately allowing sorting and filtering of sequence
records based on the taxonomy.

8

1 Installation of the obitools

1.1 Availability of the OBITools

The OBITools are open source and protected by the CeCILL 2.1 license.

All the sources of the OBITools4 can be downloaded from the metabarcoding git server
(https://git.metabarcoding.org).

1.2 Prerequisites

The OBITools4 are developped using the GO programming language, we stick to the latest
version of the language, today the 1.19.5. If you want to download and compile the sources
yourself, you first need to install the corresponding compiler on your system. Some parts of
the soft are also written in C, therefore a recent C compiler is also requested, GCC on Linux
or Windows, the Developer Tools on Mac.

Whatever the installation you decide for, you will have to ensure that a C compiler is available
on your system.

1.3 Installation with the install script

1.4 Compilation from sources

9

http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html
http://metabarcoding.org/obitools4
https://go.dev/

2 File formats usable with OBITools

OBITools manipulate have to manipulate DNA sequence data and taxonomical data. They
can use some supplentary metadata describing the experiment and produce some stats about
the processed DNA data. All the manipulated data are stored in text files, following standard
data format.

10

3 The DNA sequence data

Sequences can be stored following various format. OBITools knows some of them. The central
formats for sequence files manipulated by OBITools scripts are the fasta and fastq format.
OBITools extends the both these formats by specifying a syntax to include in the definition line
data qualifying the sequence. All file formats use the IUPAC code for encoding nucleotides.

Moreover these two formats that can be used as input and output formats, OBITools4 can
read the following format :

• EBML flat file format (use by ENA)
• Genbank flat file format
• ecoPCR output files

3.1 The IUPAC Code

The International Union of Pure and Applied Chemistry (IUPAC_) defined the standard code
for representing protein or DNA sequences.

Code Nucleotide
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil
R Purine (A or G)
Y Pyrimidine (C, T, or U)
M C or A
K T, U, or G
W T, U, or A
S C or G
B C, T, U, or G (not A)
D A, T, U, or G (not C)
H A, T, U, or C (not G)
V A, C, or G (not T, not U)

11

https://ena-docs.readthedocs.io/en/latest/submit/fileprep/flat-file-example.html
https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
https://pythonhosted.org/OBITools/scripts/ecoPCR.html

Code Nucleotide
N Any base (A, C, G, T, or U)

3.2 The fasta sequence format

The fasta format is certainly the most widely used sequence file format. This is certainly due
to its great simplicity. It was originally created for the Lipman and Pearson FASTA program.
OBITools use in more of the classical fasta format an extended version of this format where
structured data are included in the title line.

In fasta format a sequence is represented by a title line beginning with a > character and the
sequences by itself following the :doc:iupac code. The sequence is usually split other severals
lines of the same length (expect for the last one)

>my_sequence this is my pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

This is no special format for the title line excepting that this line should be unique. Usually
the first word following the> character is considered as the sequence identifier. The end of the
title line corresponding to a description of the sequence. Several sequences can be concatenated
in a same file. The description of the next sequence is just pasted at the end of the record of
the previous one

>sequence_A this is my first pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_B this is my second pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT
>sequence_C this is my third pretty sequence
ACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGT
GTGCTGACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTACGTTGCAGTGTTT
AACGACGTTGCAGTACGTTGCAGT

12

http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Citation

3.3 The fastq sequence format1

The FASTQ format is a text file format for storing both biological sequences (only nucleic
acid sequences) and the associated quality scores. The sequence and score are each encoded by
a single ASCII character. This format was originally developed by the Wellcome Trust Sanger
Institute to link a FASTA sequence file to the corresponding quality data, but has recently
become the de facto standard for storing results from high-throughput sequencers (Cock et al.
2010).

A fastq file normally uses four lines per sequence.

• Line 1 begins with a ‘@’ character and is followed by a sequence identifier and an optional
description (like a :ref:fasta title line).

• Line 2 is the raw sequence letters.
• Line 3 begins with a ‘+’ character and is optionally followed by the same sequence

identifier (and any description) again.
• Line 4 encodes the quality values for the sequence in Line 2, and must contain the same

number of symbols as letters in the sequence.

A fastq file containing a single sequence might look like this:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

The character ‘!’ represents the lowest quality while ‘~’ is the highest. Here are the quality
value characters in left-to-right increasing order of quality (ASCII):

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
^_`abcdefghijklmnopqrstuvwxyz{|}~

The original Sanger FASTQ files also allowed the sequence and quality strings to be wrapped
(split over multiple lines), but this is generally discouraged as it can make parsing complicated
due to the unfortunate choice of “@” and “+” as markers (these characters can also occur in
the quality string).

1This article uses material from the Wikipedia article FASTQ format which is released under the Creative
Commons Attribution-Share-Alike License 3.0

13

http://en.wikipedia.org/wiki/FASTQ_format

Sequence quality scores

The Phred quality value Q is an integer mapping of p (i.e., the probability that the correspond-
ing base call is incorrect). Two different equations have been in use. The first is the standard
Sanger variant to assess reliability of a base call, otherwise known as Phred quality score:

𝑄sanger = −10 log10 𝑝

The Solexa pipeline (i.e., the software delivered with the Illumina Genome Analyzer) earlier
used a different mapping, encoding the odds p/(1 − p) instead of the probability p:

𝑄solexa-prior to v.1.3 = −10 log10
𝑝

1 − 𝑝

Although both mappings are asymptotically identical at higher quality values, they differ at
lower quality levels (i.e., approximately p > 0.05, or equivalently, Q < 13).

Figure 3.1: Relationship between Q and p using the Sanger (red) and Solexa (black) equations
(described above). The vertical dotted line indicates p = 0.05, or equivalently,
𝑄 = 13.

14

Encoding

The fastq format had differente way of encoding the Phred quality score along the time. Here
a breif history of these changes is presented.

• Sanger format can encode a Phred quality score from 0 to 93 using ASCII 33 to 126
(although in raw read data the Phred quality score rarely exceeds 60, higher scores are
possible in assemblies or read maps).

• Solexa/Illumina 1.0 format can encode a Solexa/Illumina quality score from -5 to 62
using ASCII 59 to 126 (although in raw read data Solexa scores from -5 to 40 only are
expected)

• Starting with Illumina 1.3 and before Illumina 1.8, the format encoded a Phred quality
score from 0 to 62 using ASCII 64 to 126 (although in raw read data Phred scores from
0 to 40 only are expected).

• Starting in Illumina 1.5 and before Illumina 1.8, the Phred scores 0 to 2 have a slightly
different meaning. The values 0 and 1 are no longer used and the value 2, encoded by
ASCII 66 “B”.

Sequencing Control Software, Version 2.6, (Catalog # SY-960-2601, Part #
15009921 Rev. A, November 2009, page 30) states the following: If a read ends
with a segment of mostly low quality (Q15 or below), then all of the quality values
in the segment are replaced with a value of 2 (encoded as the letter B in Illumina’s
text-based encoding of quality scores)… This Q2 indicator does not predict a specific
error rate, but rather indicates that a specific final portion of the read should not
be used in further analyses. Also, the quality score encoded as “B” letter may
occur internally within reads at least as late as pipeline version 1.6, as shown in
the following example:

@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTTCTTGAGA
TTTGTTGGGGGAGACATTTTTGTGATTGCCTTGAT
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf`feed]`]_Ba_^__[YBBBBBBBBBBRTT\]][dddd`
ddd^dddadd^BBBBBBBBBBBBBBBBBBBBBBBB

An alternative interpretation of this ASCII encoding has been proposed. Also, in Illumina
runs using PhiX controls, the character ‘B’ was observed to represent an “unknown quality
score”. The error rate of ‘B’ reads was roughly 3 phred scores lower the mean observed score
of a given run.

• Starting in Illumina 1.8, the quality scores have basically returned to the use of the
Sanger format (Phred+33).

15

OBItools follows the Sanger format. Nevertheless, It is possible to read files encoded following
the Solexa/Illumina format by applying a shift of 62 (see the option --solexa of the OBITools
commands).

3.4 File extension

There is no standard file extension for a FASTQ file, but .fq and .fastq, are commonly used.

16

4 OBITools V4 Tutorial

Here is a short tutorial on how to analyze DNA metabarcoding data produced on Illumina
sequencers using:

• the OBITools
• some basic Unix commands

4.1 Wolves’ diet based on DNA metabarcoding

The data used in this tutorial correspond to the analysis of four wolf scats, using the protocol
published in Shehzad et al. (2012) for assessing carnivore diet. After extracting DNA from
the faeces, the DNA amplifications were carried out using the primers TTAGATACCCCACTATGC
and TAGAACAGGCTCCTCTAG amplifiying the 12S-V5 region (Riaz et al. 2011), together with a
wolf blocking oligonucleotide.

The complete data set can be downloaded here: the tutorial dataset

Once the data file is downloaded, using a UNIX terminal unarchive the data from the tgz
file.

tar zxvf wolf_diet.tgz

That command create a new directory named wolf_data containing every required data files:

• fastq <fastq> files resulting of aGA IIx (Illumina) paired-end (2 x 108 bp) sequencing
assay of DNA extracted and amplified from four wolf faeces:

– wolf_F.fastq
– wolf_R.fastq

• the file describing the primers and tags used for all samples sequenced:

– wolf_diet_ngsfilter.txt The tags correspond to short and specific sequences
added on the 5' end of each primer to distinguish the different samples

• the file containing the reference database in a fasta format:

17

wolf_diet.tgz

– db_v05_r117.fasta This reference database has been extracted from the release
117 of EMBL using obipcr

To not mix raw data and processed data a new directory called results is created.

mkdir results

4.2 Step by step analysis

4.2.1 Recover full sequence reads from forward and reverse partial reads

When using the result of a paired-end sequencing assay with supposedly overlapping forward
and reverse reads, the first step is to recover the assembled sequence.

The forward and reverse reads of the same fragment are at the same line position in the two
fastq files obtained after sequencing. Based on these two files, the assembly of the forward
and reverse reads is done with the obipairing utility that aligns the two reads and returns
the reconstructed sequence.

In our case, the command is:

obipairing --min-identity=0.8 \
--min-overlap=10 \
-F wolf_data/wolf_F.fastq \
-R wolf_data/wolf_R.fastq \
> results/wolf.fastq

The --min-identity and --min-overlap options allow discarding sequences with low align-
ment quality. If after the aligment, the overlaping parts of the reads is shorter than 10 base
pairs or the similarity over this aligned region is below 80% of identity, in the output file,
the forward and reverse reads are not aligned but concatenated, and the value of the mode
attribute in the sequence header is set to joined instead of alignment.

4.2.2 Remove unaligned sequence records

Unaligned sequences (:pymode=joined) cannot be used. The following command allows re-
moving them from the dataset:

obigrep -p 'annotations.mode != "join"' \
results/wolf.fastq > results/wolf.ali.fastq

18

The -p requires a go like expression. annotations.mode != "join" means that if the value
of the mode annotation of a sequence is different from join, the corresponding sequence record
will be kept.

The first sequence record of wolf.ali.fastq can be obtained using the following command
line:

head -n 4 results/wolf.ali.fastq

The folling piece of code appears on thew window of tour terminal.

@HELIUM_000100422_612GNAAXX:7:108:5640:3823#0/1 {"ali_dir":"left","ali_length":62,"mode":"alignment","pairing_mismatches":{"(T:26)->(G:13)":62,"(T:34)->(G:18)":48},"score":484,"score_norm":0.968,"seq_a_single":46,"seq_ab_match":60,"seq_b_single":46}
ccgcctcctttagataccccactatgcttagccctaaacacaagtaattaatataacaaaattgttcgccagagtactaccggcaatagcttaaaactcaaaggacttggcggtgctttatacccttctagaggagcctgttctaaggaggcgg
+
CCCCCCCBCCCCCCCCCCCCCCCCCCCCCCBCCCCCBCCCCCCC<CcCccbe[`F`accXV<TA\RYU\\ee_e[XZ[XEEEEEEEEEE?EEEEEEEEEEDEEEEEEECCCCCCCCCCCCCCCCCCCCCCCACCCCCACCCCCCCCCCCCCCCC

4.2.3 Assign each sequence record to the corresponding sample/marker
combination

Each sequence record is assigned to its corresponding sample and marker using the data
provided in a text file (here wolf_diet_ngsfilter.txt). This text file contains one line per
sample, with the name of the experiment (several experiments can be included in the same file),
the name of the tags (for example: aattaac if the same tag has been used on each extremity
of the PCR products, or aattaac:gaagtag if the tags were different), the sequence of the
forward primer, the sequence of the reverse primer, the letter T or F for sample identification
using the forward primer and tag only or using both primers and both tags, respectively (see
obimultiplex for details).

obimultiplex -t wolf_data/wolf_diet_ngsfilter.txt \
-u results/unidentified.fastq \
results/wolf.ali.fastq \
> results/wolf.ali.assigned.fastq

This command creates two files:

• unidentified.fastq containing all the sequence records that were not assigned to a
sample/marker combination

• wolf.ali.assigned.fastq containing all the sequence records that were properly as-
signed to a sample/marker combination

Note that each sequence record of the wolf.ali.assigned.fastq file contains only the bar-
code sequence as the sequences of primers and tags are removed by the obimultiplex program.

19

Information concerning the experiment, sample, primers and tags is added as attributes in the
sequence header.

For instance, the first sequence record of wolf.ali.assigned.fastq is:

@HELIUM_000100422_612GNAAXX:7:108:5640:3823#0/1_sub[28..127] {"ali_dir":"left","ali_length":62,"direction":"direct","experiment":"wolf_diet","forward_match":"ttagataccccactatgc","forward_mismatches":0,"forward_primer":"ttagataccccactatgc","forward_tag":"gcctcct","mode":"alignment","pairing_mismatches":{"(T:26)->(G:13)":35,"(T:34)->(G:18)":21},"reverse_match":"tagaacaggctcctctag","reverse_mismatches":0,"reverse_primer":"tagaacaggctcctctag","reverse_tag":"gcctcct","sample":"29a_F260619","score":484,"score_norm":0.968,"seq_a_single":46,"seq_ab_match":60,"seq_b_single":46}
ttagccctaaacacaagtaattaatataacaaaattgttcgccagagtactaccggcaatagcttaaaactcaaaggacttggcggtgctttataccctt
+
CCCBCCCCCBCCCCCCC<CcCccbe[`F`accXV<TA\RYU\\ee_e[XZ[XEEEEEEEEEE?EEEEEEEEEEDEEEEEEECCCCCCCCCCCCCCCCCCC

4.2.4 Dereplicate reads into uniq sequences

The same DNA molecule can be sequenced several times. In order to reduce both file size
and computations time, and to get easier interpretable results, it is convenient to work with
unique sequences instead of reads. To dereplicate such reads into unique sequences, we use the
obiuniq command.

Definition: Dereplicate reads into unique sequences

1. compare all the reads in a data set to each other
2. group strictly identical reads together
3. output the sequence for each group and its count in the original dataset

(in this way, all duplicated reads are removed)

Definition adapted from Seguritan and Rohwer (2001)

For dereplication, we use the obiuniq command with the -m sample. The -m sample option
is used to keep the information of the samples of origin for each uniquesequence.

obiuniq -m sample \
results/wolf.ali.assigned.fastq \
> results/wolf.ali.assigned.uniq.fasta

Note that obiuniq returns a fasta file.

The first sequence record of wolf.ali.assigned.uniq.fasta is:

>HELIUM_000100422_612GNAAXX:7:93:6991:1942#0/1_sub[28..126] {"ali_dir":"left","ali_length":63,"count":1,"direction":"reverse","experiment":"wolf_diet","forward_match":"ttagataccccactatgc","forward_mismatches":0,"forward_primer":"ttagataccccactatgc","forward_tag":"gaatatc","merged_sample":{"26a_F040644":1},"mode":"alignment","pairing_mismatches":{"(A:10)->(G:34)":76,"(C:06)->(A:34)":58},"reverse_match":"tagaacaggctcctctag","reverse_mismatches":0,"reverse_primer":"tagaacaggctcctctag","reverse_tag":"gaatatc","score":730,"score_norm":0.968,"seq_a_single":45,"seq_ab_match":61,"seq_b_single":45}
ttagccctaaacataaacattcaataaacaagaatgttcgccagagaactactagcaaca
gcctgaaactcaaaggacttggcggtgctttatatccct

The run of obiuniq has added two key=values entries in the header of the fasta sequence:

20

• "merged_sample":{"29a_F260619":1}: this sequence have been found once in a single
sample called 29a_F260619

• "count":1 : the total count for this sequence is 1

To keep only these two attributes, we can use the obiannotate command:

obiannotate -k count -k merged_sample \
results/wolf.ali.assigned.uniq.fasta \
> results/wolf.ali.assigned.simple.fasta

The first five sequence records of wolf.ali.assigned.simple.fasta become:

>HELIUM_000100422_612GNAAXX:7:26:18930:11105#0/1_sub[28..127] {"count":1,"merged_sample":{"29a_F260619":1}}
ttagccctaaacacaagtaattaatataacaaaatwattcgcyagagtactacmggcaat
agctyaaarctcamagrwcttggcggtgctttataccctt
>HELIUM_000100422_612GNAAXX:7:58:5711:11399#0/1_sub[28..127] {"count":1,"merged_sample":{"29a_F260619":1}}
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtwctaccgssaat
agcttaaaactcaaaggactgggcggtgctttataccctt
>HELIUM_000100422_612GNAAXX:7:100:15836:9304#0/1_sub[28..127] {"count":1,"merged_sample":{"29a_F260619":1}}
ttagccctaaacatagataattacacaaacaaaattgttcaccagagtactagcggcaac
agcttaaaactcaaaggacttggcggtgctttataccctt
>HELIUM_000100422_612GNAAXX:7:55:13242:9085#0/1_sub[28..126] {"count":4,"merged_sample":{"26a_F040644":4}}
ttagccctaaacataaacattcaataaacaagagtgttcgccagagtactactagcaaca
gcctgaaactcaaaggacttggcggtgctttacatccct
>HELIUM_000100422_612GNAAXX:7:86:8429:13723#0/1_sub[28..127] {"count":7,"merged_sample":{"15a_F730814":5,"29a_F260619":2}}
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggactcggcggtgctttataccctt

4.2.5 Denoise the sequence dataset

To have a set of sequences assigned to their corresponding samples does not mean that all
sequences are biologically meaningful i.e. some of these sequences can contains PCR and/or
sequencing errors, or chimeras.

Tag the sequences for PCR errors (sequence variants)

The obiclean program tags sequence variants as potential error generated during PCR am-
plification. We ask it to keep the head sequences (-H option) that are sequences which are
not variants of another sequence with a count greater than 5% of their own count (-r 0.05
option).

21

obiclean -s sample -r 0.05 -H \
results/wolf.ali.assigned.simple.fasta \

> results/wolf.ali.assigned.simple.clean.fasta

One of the sequence records of wolf.ali.assigned.simple.clean.fasta is:

>HELIUM_000100422_612GNAAXX:7:66:4039:8016#0/1_sub[28..127] {"count":17,"merged_sample":{"13a_F730603":17},"obiclean_head":true,"obiclean_headcount":1,"obiclean_internalcount":0,"obi
clean_samplecount":1,"obiclean_singletoncount":0,"obiclean_status":{"13a_F730603":"h"},"obiclean_weight":{"13a_F730603":25}}
ctagccttaaacacaaatagttatgcaaacaaaactattcgccagagtactaccggcaac
agcccaaaactcaaaggacttggcggtgcttcacaccctt

To remove such sequences as much as possible, we first discard rare sequences and then rse-
quence variants that likely correspond to artifacts.

Get some statistics about sequence counts

obicount results/wolf.ali.assigned.simple.clean.fasta

time="2023-02-23T18:43:37+01:00" level=info msg="Appending results/wolf.ali.assigned.simple.clean.fasta file\n"
2749 36409 273387

The dataset contains 4313 sequences variant corresponding to 42452 sequence reads. Most of
the variants occur only a single time in the complete dataset and are usualy named singletons

obigrep -p 'sequence.Count() == 1' results/wolf.ali.assigned.simple.clean.fasta \
| obicount

time="2023-02-23T18:43:37+01:00" level=info msg="Reading sequences from stdin in guessed\n"
time="2023-02-23T18:43:37+01:00" level=info msg="Appending results/wolf.ali.assigned.simple.clean.fasta file\n"
time="2023-02-23T18:43:37+01:00" level=info msg="On output use JSON headers"
2623 2623 261217

In that dataset sigletons corresponds to 3511 variants.

Using R and the ROBIFastread package able to read headers of the fasta files produced by
OBITools, we can get more complete statistics on the distribution of occurrencies.

22

library(ROBIFastread)
library(ggplot2)

seqs <- read_obifasta("results/wolf.ali.assigned.simple.clean.fasta",keys="count")

ggplot(data = seqs, mapping=aes(x = count)) +
geom_histogram(bins=100) +
scale_y_sqrt() +
scale_x_sqrt() +
geom_vline(xintercept = 10, col="red", lty=2) +
xlab("number of occurrencies of a variant")

0

1000

2000

0 5000 10000
number of occurrencies of a variant

co
un

t

In a similar way it is also possible to plot the distribution of the sequence length.

ggplot(data = seqs, mapping=aes(x = nchar(sequence))) +
geom_histogram() +
scale_y_log10() +
geom_vline(xintercept = 80, col="red", lty=2) +
xlab("sequence lengths in base pair")

23

1

10

100

1000

0 30 60 90
sequence lengths in base pair

co
un

t

Keep only the sequences having a count greater or equal to 10 and a length shorter than
80 bp

Based on the previous observation, we set the cut-off for keeping sequences for further analysis
to a count of 10. To do this, we use the obigrep <scripts/obigrep> command. The -p
'count>=10' option means that the python expression :pycount>=10 must be evaluated to
:pyTrue for each sequence to be kept. Based on previous knowledge we also remove sequences
with a length shorter than 80 bp (option -l) as we know that the amplified 12S-V5 barcode for
vertebrates must have a length around 100bp.

obigrep -l 80 -p 'sequence.Count() >= 10' results/wolf.ali.assigned.simple.clean.fasta \
> results/wolf.ali.assigned.simple.clean.c10.l80.fasta

The first sequence record of results/wolf.ali.assigned.simple.clean.c10.l80.fasta
is:

>HELIUM_000100422_612GNAAXX:7:22:2603:18023#0/1_sub[28..127] {"count":12182,"merged_sample":{"15a_F730814":7559,"29a_F260619":4623},"obiclean_head":true,"obiclean_headcount":2,"obiclean_internalcount":0,"obiclean_samplecount":2,"obiclean_singletoncount":0,"obiclean_status":{"15a_F730814":"h","29a_F260619":"h"},"obiclean_weight":{"15a_F730814":9165,"29a_F260619":6275}}
ttagccctaaacacaagtaattaatataacaaaattattcgccagagtactaccggcaat
agcttaaaactcaaaggacttggcggtgctttataccctt

At that time in the data cleanning we have conserved :

24

obicount results/wolf.ali.assigned.simple.clean.c10.l80.fasta

time="2023-02-23T18:43:40+01:00" level=info msg="Appending results/wolf.ali.assigned.simple.clean.c10.l80.fasta file\n"
26 31337 2585

4.2.6 Taxonomic assignment of sequences

Once denoising has been done, the next step in diet analysis is to assign the barcodes to the
corresponding species in order to get the complete list of species associated to each sample.

Taxonomic assignment of sequences requires a reference database compiling all possible species
to be identified in the sample. Assignment is then done based on sequence comparison between
sample sequences and reference sequences.

Download the taxonomy

It is always possible to download the complete taxonomy from NCBI using the following
commands.

mkdir TAXO
cd TAXO
curl http://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz \

| tar -zxvf -
cd ..

For people have a low speed internet connection, a copy of the taxdump.tar.gz file is provided
in the wolf_data directory. The NCBI taxonomy is dayly updated, but the one provided here
is ok for running this tutorial.

To build the TAXO directory from the provided taxdump.tar.gz, you need to execute the
following commands

mkdir TAXO
cd TAXO
tar zxvf wolf_data/taxdump.tar.gz
cd ..

25

Build a reference database

One way to build the reference database is to use the obipcr program to simulate a PCR
and extract all sequences from a general purpose DNA database such as genbank or EMBL
that can be amplified in silico by the two primers (here TTAGATACCCCACTATGC and
TAGAACAGGCTCCTCTAG) used for PCR amplification.

The two steps to build this reference database would then be

1. Today, the easiest database to download is Genbank. But this will take you more than a
day and occupy more than half a terabyte on your hard drive. In the wolf_data directory,
a shell script called download_gb.sh is provided to perform this task. It requires that
the programs wget2 and curl are available on your computer.

2. Use obipcr to simulate amplification and build a reference database based on the puta-
tively amplified barcodes and their recorded taxonomic information.

As these steps can take a long time (about a day for the download and an hour for the PCR),
we already provide the reference database produced by the following commands so you can
skip its construction. Note that as the Genbank and taxonomic database evolve frequently, if
you run the following commands you may get different results.

4.2.6.0.1 * Download the sequences

mkdir genbank
cd genbank
../wolf_data/install_gb.sh
cd ..

DO NOT RUN THIS COMMAND EXCEPT IF YOU ARE REALLY CONSIENT OF THE
TIME AND DISK SPACE REQUIRED.

4.2.6.0.2 * Use obipcr to simulate an in silico‘ PCR

obipcr -t TAXO -e 3 -l 50 -L 150 \
--forward TTAGATACCCCACTATGC \
--reverse TAGAACAGGCTCCTCTAG \
--no-order \
genbank/Release-251/gb*.seq.gz
> results/v05.pcr.fasta

26

Note that the primers must be in the same order both in wolf_diet_ngsfilter.txt and in
the obipcr command. The part of the path indicating the Genbank release can change. Please
check in your genbank directory the exact name of your release.

4.2.6.0.3 * Clean the database

1. filter sequences so that they have a good taxonomic description at the species, genus,
and family levels (obigrep command command below).

2. remove redundant sequences (obiuniq command below).
3. ensure that the dereplicated sequences have a taxid at the family level (obigrep com-

mand below).
4. ensure that sequences each have a unique identification (obiannotate command below)

obigrep -t TAXO \
--require-rank species \
--require-rank genus \
--require-rank family \
results/v05.ecopcr > results/v05_clean.fasta

obiuniq -c taxid \
results/v05_clean.fasta \
> results/v05_clean_uniq.fasta

obirefidx -t TAXO results/v05_clean_uniq.fasta \
> results/v05_clean_uniq.indexed.fasta

Warning

From now on, for the sake of clarity, the following commands will use the filenames of
the files provided with the tutorial. If you decided to run the last steps and use the files
you have produced, you'll have to use results/v05_clean_uniq.indexed.fasta instead of
wolf_data/db_v05_r117.indexed.fasta.

4.2.7 Assign each sequence to a taxon

Once the reference database is built, taxonomic assignment can be carried out using the obitag
command.

obitag -t TAXO -R wolf_data/db_v05_r117.indexed.fasta \
results/wolf.ali.assigned.simple.clean.c10.l80.fasta \
> results/wolf.ali.assigned.simple.clean.c10.l80.taxo.fasta

27

The obitag adds several attributes in the sequence record header, among them:

• obitag_bestmatch=ACCESSION where ACCESSION is the id of hte sequence in the
reference database that best aligns to the query sequence;

• obitag_bestid=FLOAT where FLOAT*100 is the percentage of identity between the
best match sequence and the query sequence;

• taxid=TAXID where TAXID is the final assignation of the sequence by obitag
• scientific_name=NAME where NAME is the scientific name of the assigned taxid.

The first sequence record of wolf.ali.assigned.simple.clean.c10.l80.taxo.fasta is:

>HELIUM_000100422_612GNAAXX:7:81:18704:12346#0/1_sub[28..126] {"count":88,"merged_sample":{"26a_F040644":88},"obiclean_head":true,"obiclean_headcount":1,"obiclean_internalcount":0,"obiclean_samplecount":1,"obiclean_singletoncount":0,"obiclean_status":{"26a_F040644":"h"},"obiclean_weight":{"26a_F040644":208},"obitag_bestid":0.9207920792079208,"obitag_bestmatch":"AY769263","obitag_difference":8,"obitag_match_count":1,"obitag_rank":"clade","scientific_name":"Boreoeutheria","taxid":1437010}
ttagccctaaacataaacattcaataaacaagaatgttcgccagaggactactagcaata
gcttaaaactcaaaggacttggcggtgctttatatccct

4.2.8 Generate the final result table

Some unuseful attributes can be removed at this stage.

• obiclean_head
• obiclean_headcount
• obiclean_internalcount
• obiclean_samplecount
• obiclean_singletoncount

obiannotate --delete-tag=obiclean_head \
--delete-tag=obiclean_headcount \
--delete-tag=obiclean_internalcount \
--delete-tag=obiclean_samplecount \
--delete-tag=obiclean_singletoncount \

results/wolf.ali.assigned.simple.clean.c10.l80.taxo.fasta \
> results/wolf.ali.assigned.simple.clean.c10.l80.taxo.ann.fasta

The first sequence record of wolf.ali.assigned.simple.c10.l80.clean.taxo.ann.fasta
is then:

>HELIUM_000100422_612GNAAXX:7:84:16335:5083#0/1_sub[28..126] {"count":96,"merged_sample":{"26a_F040644":11,"29a_F260619":85},"obiclean_status":{"26a_F040644":"s","29a_F260619":"h"},"obiclean_weight":{"26a_F040644":14,"29a_F260619":110},"obitag_bestid":0.9595959595959596,"obitag_bestmatch":"AC187326","obitag_difference":4,"obitag_match_count":1,"obitag_rank":"subspecies","scientific_name":"Canis lupus familiaris","taxid":9615}
ttagccctaaacataagctattccataacaaaataattcgccagagaactactagcaaca
gattaaacctcaaaggacttggcagtgctttatacccct

28

4.2.9 Looking at the data in R

library(ROBIFastread)
library(vegan)

Le chargement a nécessité le package : permute

Le chargement a nécessité le package : lattice

This is vegan 2.6-4

library(magrittr)

diet_data <- read_obifasta("results/wolf.ali.assigned.simple.clean.c10.l80.taxo.fasta")
diet_data %<>% extract_features("obitag_bestmatch","obitag_rank","scientific_name",'taxid')

diet_tab <- extract_readcount(diet_data,key="obiclean_weight")
diet_tab

4 x 26 sparse Matrix of class "dgCMatrix"

[[suppressing 26 column names 'HELIUM_000100422_612GNAAXX:7:100:4828:3492#0/1_sub[28..127]', 'HELIUM_000100422_612GNAAXX:7:7:2880:4021#0/1_sub[28..127]', 'HELIUM_000100422_612GNAAXX:7:7:18108:9040#0/1_sub[28..126]' ...]]

13a_F730603 22 . 9 19 25 1 20
29a_F260619 . 44 . 1 . 13 . 25 . . . 16 391 6275 110 .
15a_F730814 . . 4 5 9138 . .
26a_F040644 . . . 481 . . 14 . 43 208 72 . . 52 88 . 31 . 14 18

13a_F730603 15 8409
29a_F260619 . . . 353 . .
15a_F730814
26a_F040644 12265 15 17 . . .

This file contains 26 sequences. You can deduce the diet of each sample:
• 13a_F730603: Cervus elaphus
• 15a_F730814: Capreolus capreolus
• 26a_F040644: Marmota sp. (according to the location, it is Marmota marmota)

29

• 29a_F260619: Capreolus capreolus

Note that we also obtained a few wolf sequences although a wolf-blocking oligonucleotide was
used.

30

Part II

The OBITools V4 commands

31

5 Specifying the data input to OBITools
commands

5.1 Specifying input format

Five sequence formats are accepted for input files. Fasta (Section 3.2) and Fastq (Section 3.3)
are the main ones, EMBL and Genbank allow the use of flat files produced by these two
international databases. The last one, ecoPCR, is maintained for compatibility with previous
OBITools and allows to read ecoPCR outputs as sequence files.

• --ecopcr : Read data following the ecoPCR output format.
• --embl Read data following the EMBL flatfile format.
• --genbank Read data following the Genbank flatfile format.

Several encoding schemes have been proposed for quality scores in Fastq format. Currently,
OBITools considers Sanger encoding as the standard. For reasons of compatibility with older
datasets produced with Solexa sequencers, it is possible, by using the following option, to force
the use of the corresponding quality encoding scheme when reading these older files.

• --solexa Decodes quality string according to the Solexa specification. (default: false)

32

6 Controling OBITools outputs

6.1 Specifying output format

Only two output sequence formats are supported by OBITools, Fasta and Fastq. Fastq is
used when output sequences are associated with quality information. Otherwise, Fasta is the
default format. However, it is possible to force the output format by using one of the following
two options. Forcing the use of Fasta results in the loss of quality information. Conversely,
when the Fastq format is forced with sequences that have no quality data, dummy qualities
set to 40 for each nucleotide are added.

• --fasta-output Read data following the ecoPCR output format.
• --fastq-output Read data following the EMBL flatfile format.

OBITools allows multiple input files to be specified for a single command.

• --no-orderWhen several input files are provided, indicates that there is no order among
them. (default: false). Using such option can increase a lot the processing of the data.

6.2 The Fasta and Fastq annotations format

OBITools extend the Fasta and Fastq formats by introducing a format for the title lines of these
formats allowing to annotate every sequence. While the previous version of OBITools used
an ad-hoc format for these annotation, this new version introduce the usage of the standard
JSON format to store them.

On input, OBITools automatically recognize the format of the annotations, but two options
allows to force the parsing following one of them. You should normally not need to use these
options.

• --input-OBI-header FASTA/FASTQ title line annotations follow OBI format. (default:
false)

• --input-json-header FASTA/FASTQ title line annotations follow json format. (de-
fault: false)

33

On output, by default annotation are formatted using the new JSON format. For compatibility
with previous version of OBITools and with external scripts and software, it is possible to force
the usage of the previous OBITools format.

• --output-OBI-header|-O output FASTA/FASTQ title line annotations follow OBI for-
mat. (default: false)

• --output-json-header output FASTA/FASTQ title line annotations follow json format.
(default: false)

34

7 Options common to most of the OBITools
commands

7.1 Helpful options

--help, -h Display a friendly help message.

--no-progressbar

7.2 System related options

Managing parallel execution of tasks

A new feature of OBITools V4 is the ability to run multiple tasks in parallel, reading files,
calculating on the data, formatting and writing the results. Each of these tasks can itself be
parallelized by dividing the data into batches and running the calculation on several batches
in parallel. This allows the overall calculation time of an OBITools command to be reduced
considerably. The parameters organizing the parallel calculation are determined automatically
to use the maximum capacity of your computer. But in some circumstances, it is necessary to
override these default settings either to try to optimize the computation on a given machine,
or to limit the OBITools to using only a part of the computational capacity. There are two
options for doing this.

--max-cpu OBITools V4 are able to run in parallel on all the CPU cores available on the
computer. It is sometime required to limit the computation to a smaller number of cores.
That option specify the maximum number of cores that the OBITools command can use.
This behaviour can also be set up using the OBIMAXCPU environment variable.

--workers, -w

If your computer has 8 cores, but you want to limit OBITools to use only two of them you
have several solution:

35

• If you want to set the limit for a single execution you can use the –max-cpu option

obiconvert --max-cpu 2 --fasta-output data.fastq > data.fasta

or you can precede the command by setting the environment variable OBIMAXCPU

OBIMAXCPU=2 obiconvert --fasta-output data.fastq > data.fasta

• If you want to set the limit to your complete session, you have to export OBIMAXCPU

export OBIMAXCPU=2

all the following OBITools commands will be limited to use at max 2 CPU cores.

• If all the time you want to impose this limit, you must include the above export command
in your .bashrc file.

OBITools debuging related options

--debug

36

8 OBITools expression language

Several OBITools (e.g. obigrep, obiannotate) allow the user to specify some simple expressions
to compute values or define predicates. This expressions are parsed and evaluated using the
gval go package, which allows for evaluating go-Like expression.

8.1 Variables usable in the expression

• sequence is the sequence object on which the expression is evaluated.
• annotationsis a map object containing every annotations associated to the currently

processed sequence.

8.2 Function defined in the language

Instrospection functions

len(x) It is a generic function allowing to retreive the size of a object. It returns the length of
a sequences, the number of element in a map like annotations, the number of elements
in an array. The reurned value is an int.

contains(map,key) Tests if the map contains a value assciated to key

Cast functions

int(x) Converts if possible the x value to an integer value. The function returns an int.

numeric(x) Converts if possible the x value to a float value. The function returns a float.

bool(x) Converts if possible the x value to a boolean value. The function returns a bool.

37

https://pkg.go.dev/github.com/PaesslerAG/gval

String related functions

printf(format,...) Allows to combine several values to build a string. format follows the
classical C printf syntax. The function returns a string.

subspc(x) substitutes every space in the x string by the underscore (_) character. The func-
tion returns a string.

Condition function

ifelse(condition,val1,val2) The condition value has to be a bool value. If it is true
the function returns val1, otherwise, it is returning val2.

8.2.1 Sequence analysis related function

composition(sequence) The nucleotide composition of the sequence is returned as as map
indexed by a, c, g, or t and each value is the number of occurrences of that nucleotide.
A fifth key others accounts for all others symboles.

gcskew(sequence) Computes the excess of g compare to c of the sequence, known as the GC
skew.

𝑆𝑘𝑒𝑤𝐺𝐶 = 𝐺 − 𝐶
𝐺 + 𝐶

8.3 Accessing to the sequence annotations

The annotations variable is a map object containing all the annotations associated to the cur-
rently processed sequence. Index of the map are the attribute names. It exists to possibillities
to retreive an annotation. It is possible to use the classical [] indexing operator, putting the
attribute name quoted by double quotes between them.

annotations["direction"]

The above code retreives the direction annotation. A second notation using the dot (.) is
often more convenient.

annotations.direction

Special attributes of the sequence are accessible only by dedicated methods of the sequence
object.

38

• The sequence identifier : Id()
• THe sequence definition : Definition()

sequence.Id()

39

9 Metabarcode design and quality assessment

9.1 obipcr

Replace the ecoPCR original OBITools

40

10 File format conversions

10.1 obiconvert

41

11 Sequence annotations

11.1 obiannotate

11.2 obitag

11.3 obitagpcr

42

12 Computations on sequences

12.1 obipairing

Replace the illuminapairedends original OBITools

Alignment procedure

obipairing is introducing a new alignment algorithm compared to the illuminapairedend
command of the OBITools V2. Nethertheless this new algorithm has been design to produce
the same results than the previous, except in very few cases.

The new algorithm is a two-step procedure. First, a FASTN-type algorithm (Lipman and
Pearson 1985) identifies the best offset between the two matched readings. This identifies the
region of overlap.

In the second step, the matching regions of the two reads are extracted along with a flanking
sequence of Δ base pairs. The two subsequences are then aligned using a “one side free end-
gap” dynamic programming algorithm. This latter step is only called if at least one mismatch
is detected by the FASTP step.

Unless the similarity between the two reads at their overlap region is very low, the addition of
the flanking regions in the second step of the alignment ensures the same alignment as if the
dynamic programming alignment was performed on the full reads.

The scoring system

In the dynamic programming step, the match and mismatch scores take into account the
quality scores of the two aligned nucleotides. By taking these into account, the probability of
a true match can be calculated for each aligned base pair.

If we consider a nucleotide read with a quality score 𝑄, the probability of misreading this base
(𝑃𝐸) is :

𝑃𝐸 = 10− 𝑄
10

Thus, when a given nucleotide 𝑋 is observed with the quality score 𝑄. The probability that
𝑋 is really an 𝑋 is :

43

𝑃(𝑋 = 𝑋) = 1 − 𝑃𝐸

Otherwise, 𝑋 is actually one of the three other possible nucleotides (𝑋𝐸1, 𝑋𝐸2 or 𝑋𝐸3). If we
suppose that the three reading error have the same probability :

𝑃(𝑋 = 𝑋𝐸1) = 𝑃(𝑋 = 𝑋𝐸3) = 𝑃(𝑋 = 𝑋𝐸3) = 𝑃𝐸
3

At each position in an alignment where the two nucleotides 𝑋1 and 𝑋2 face each other (not a
gapped position), the probability of a true match varies depending on whether 𝑋1 = 𝑋2, an
observed match, or 𝑋1 ≠ 𝑋2, an observed mismatch.

Probability of a true match when 𝑋1 = 𝑋2

That probability can be divided in two parts. First 𝑋1 and 𝑋2 have been correctly read. The
corresponding probability is :

𝑃𝑇 𝑀 = (1 − 𝑃𝐸1)(1 − 𝑃𝐸2)
= (1 − 10− 𝑄1

10)(1 − 10− 𝑄2
10)

Secondly, a match can occure if the true nucleotides read as 𝑋1 and 𝑋2 are not 𝑋1 and 𝑋2
but identical.

𝑃(𝑋1 == 𝑋𝐸1) ∩ 𝑃(𝑋2 == 𝑋𝐸1) = 𝑃𝐸1𝑃𝐸2
9

𝑃(𝑋1 == 𝑋𝐸𝑥) ∩ 𝑃(𝑋2 == 𝑋𝐸𝑥) = 𝑃𝐸1𝑃𝐸2
3

The probability of a true match between 𝑋1 and 𝑋2 when 𝑋1 = 𝑋2 an observed match :

𝑃(𝑀𝐴𝑇 𝐶𝐻|𝑋1 = 𝑋2) = (1 − 𝑃𝐸1)(1 − 𝑃𝐸2) + 𝑃𝐸1𝑃𝐸2
3

Probability of a true match when 𝑋1 ≠ 𝑋2

That probability can be divided in three parts.

a. 𝑋1 has been correctly read and 𝑋2 is a sequencing error and is actually equal to 𝑋1.

𝑃𝑎 = (1 − 𝑃𝐸1)𝑃𝐸2
3

44

b. 𝑋2 has been correctly read and 𝑋1 is a sequencing error and is actually equal to 𝑋2.

𝑃𝑏 = (1 − 𝑃𝐸2)𝑃𝐸1
3

c. 𝑋1 and 𝑋2 corresponds to sequencing error but are actually the same base 𝑋𝐸𝑥

𝑃𝑐 = 2𝑃𝐸1𝑃𝐸2
9

Consequently :

𝑃 (𝑀𝐴𝑇 𝐶𝐻|𝑋1 ≠ 𝑋2) = (1 − 𝑃𝐸1)𝑃𝐸2
3 + (1 − 𝑃𝐸2)𝑃𝐸1

3 + 2𝑃𝐸1𝑃𝐸2
9

Probability of a match under the random model

The second considered model is a pure random model where every base is equiprobable, hence
having a probability of occurrence of a nucleotide equals 0.25. Under that hypothesis

𝑃(𝑀𝐴𝑇 𝐶𝐻|Random model) = 0.25

The score is a log ration of likelyhood

Score is define as the logarithm of the ratio between the likelyhood of the observations consid-
ering the sequencer error model over tha likelyhood u

12.2 obimultiplex

Replace the ngsfilter original OBITools

12.3 obicomplement

12.4 obiclean

12.5 obiuniq

45

−40

−20

0

10 20 30 40
Q1 (Q2=20)

S
co

re

Class

Match

Mismatch

Figure 12.1: Evolution of the match and mismatch scores when the quality of base is 20 while
the second range from 10 to 40.

46

13 Sequence sampling and filtering

13.1 obigrep – filters sequence files according to numerous
conditions

The obigrep command is somewhat analogous to the standard Unix grep command. It
selects a subset of sequence records from a sequence file. A sequence record is a complex
object consisting of an identifier, a set of attributes (a key, defined by its name, associated
with a value), a definition, and the sequence itself. Instead of working text line by text line like
the standard Unix tool, obigrep selection is done sequence record by sequence record. A large
number of options allow you to refine the selection on any element of the sequence. obigrep
allows you to specify multiple conditions simultaneously (which take on the value TRUE or
FALSE) and only those sequence records which meet all conditions (all conditions are TRUE)
are selected. obigrep is able to work on two paired read files. The selection criteria apply to
one or the other of the readings in each pair depending on the mode chosen (--paired-mode
option). In all cases the selection is applied in the same way to both files, thus maintaining
their consistency.

13.1.1 The options usable with obigrep

13.1.1.1 Selecting sequences based on their caracteristics

Sequences can be selected on several of their caracteristics, their length, their id, their sequence.
Options allow for specifying the condition if selection.

Selection based on the sequence

Sequence records can be selected according if they match or not with a pattern. The simplest
pattern is as short sequence (e.g AACCTT). But the usage of regular patterns allows for looking
for more complex pattern. As example, A[TG]C+G matches a A, followed by a T or a G, then
one or several C and endly a G.

--sequence|-s PATTERN Regular expression pattern to be tested against the sequence itself.
The pattern is case insensitive. A complete description of the regular pattern grammar
is available here.

Examples: Selects only the sequence records that contain an EcoRI restriction site.

47

https://yourbasic.org/golang/regexp-cheat-sheet/#cheat-sheet

obigrep -s 'GAATTC' seq1.fasta > seq2.fasta

: Selects only the sequence records that contain a stretch of at least 10 A.

obigrep -s 'A{10,}' seq1.fasta > seq2.fasta

: Selects only the sequence records that do not contain ambiguous nucleotides.

obigrep -s '^[ACGT]+$' seq1.fasta > seq2.fasta

--min-count | -c COUNT only sequences reprensenting at least COUNT reads will be se-
lected. That option rely on the count attribute. If the count attribute is not defined
for a sequence record, it is assumed equal to 1.

--max-count | -C COUNT only sequences reprensenting no more than COUNT reads will be
selected. That option rely on the count attribute. If the count attribute is not defined
for a sequence record, it is assumed equal to 1.

Examples Selecting sequence records representing at least five reads in the dataset.

obigrep -c 5 data_SPER01.fasta > data_norare_SPER01.fasta

48

14 Utilities

14.1 obicount

obicount counts the number of sequence records, the sum of the count attributes, and the
sum of the length of all the sequences.

Example:

obicount seq.fasta

Prints the number of sequence records contained in the seq.fasta file and the sum of their
count attributes.

Options specific to the command

• --reads|-r Prints read counts.
• --symbols|-s Prints symbol counts.
• --variants|-v Prints variant counts.

14.2 obidistribute

14.3 obifind

Replace the ecofind original OBITools.

49

Part III

The GO OBITools library

50

BioSequence

The BioSequence class is used to represent biological sequences. It allows for storing : - the
sequence itself as a []byte - the sequencing quality score as a []byte if needed - an identifier as
a string - a definition as a string - a set of (key, value) pairs in a map[sting]interface{}

BioSequence is defined in the obiseq module and is included using the code

import (
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

Creating new instances

To create new instance, use

• MakeBioSequence(id string, sequence []byte, definition string) obiseq.BioSequence
• NewBioSequence(id string, sequence []byte, definition string) *obiseq.BioSequence

Both create a BioSequence instance, but when the first one returns the instance, the second
returns a pointer on the new instance. Two other functions MakeEmptyBioSequence, and
NewEmptyBioSequence do the same job but provide an uninitialized objects.

• id parameters corresponds to the unique identifier of the sequence. It mist be a string
constituted of a single word (not containing any space).

• sequence is the DNA sequence itself, provided as a byte array ([]byte).
• definition is a string, potentially empty, but usualy containing a sentence explaining

what is that sequence.

import (
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewBiosequence(

"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

}

When formated as fasta the parameters correspond to the following schema

51

>id definition containing potentially several words
sequence

End of life of a BioSequence instance

When an instance of BioSequence is no longer in use, it is normally taken over by the GO
garbage collector. If you know that an instance will never be used again, you can, if you wish,
call the Recycle method on it to store the allocated memory elements in a pool to limit the
allocation effort when many sequences are being handled. Once the recycle method has been
called on an instance, you must ensure that no other method is called on it.

Accessing to the elements of a sequence

The different elements of an obiseq.BioSequence must be accessed using a set of methods.
For the three main elements provided during the creation of a new instance methodes are :

• Id() string
• Sequence() []byte
• Definition() string

It exists pending method to change the value of these elements

• SetId(id string)
• SetSequence(sequence []byte)
• SetDefinition(definition string)

import (
"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewBiosequence(

"seq_GH0001",
bytes.FromString("ACGTGTCAGTCG"),
"A short test sequence",
)

fmt.Println(myseq.Id())
myseq.SetId("SPE01_0001")
fmt.Println(myseq.Id())

}

52

Different ways for accessing an editing the sequence

If Sequence()and SetSequence(sequence []byte) methods are the basic ones, several other
methods exist.

• String() string return the sequence directly converted to a string instance.
• The Write method family allows for extending an existing sequence following the buffer

protocol.

– Write(data []byte) (int, error) allows for appending a byte array on 3’ end
of the sequence.

– WriteString(data string) (int, error) allows for appending a string.
– WriteByte(data byte) error allows for appending a single byte.

The Clear method empties the sequence buffer.

import (
"fmt"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"

)

func main() {
myseq := obiseq.NewEmptyBiosequence()

myseq.WriteString("accc")
myseq.WriteByte(byte('c'))
fmt.Println(myseq.String())

}

Sequence quality scores

Sequence quality scores cannot be initialized at the time of instance creation. You must use
dedicated methods to add quality scores to a sequence.

To be coherent the length of both the DNA sequence and que quality score sequence must be
equal. But assessment of this constraint is realized. It is of the programmer responsability to
check that invariant.

While accessing to the quality scores relies on the method Quality() []byte, setting the
quality need to call one of the following method. They run similarly to their sequence dedicated
conterpart.

• SetQualities(qualities Quality)
• WriteQualities(data []byte) (int, error)

53

• WriteByteQualities(data byte) error

In a way analogous to the Clear method, ClearQualities() empties the sequence of quality
scores.

The annotations of a sequence

A sequence can be annotated with attributes. Each attribute is associated with a value. An
attribute is identified by its name. The name of an attribute consists of a character string
containing no spaces or blank characters. Values can be of several types.

• Scalar types:

– integer
– numeric
– character
– boolean

• Container types:

– vector
– map

Vectors can contain any type of scalar. Maps are compulsorily indexed by strings and can
contain any scalar type. It is not possible to have nested container type.

Annotations are stored in an object of type bioseq.Annotation which is an alias of
map[string]interface{}. This map can be retrieved using the Annotations() Annotation
method. If no annotation has been defined for this sequence, the method returns an empty
map. It is possible to test an instance of BioSequence using its HasAnnotation() bool
method to see if it has any annotations associated with it.

• GetAttribute(key string) (interface{}, bool)

The sequence iterator

The pakage obiter provides an iterator mecanism for manipulating sequences. The main class
provided by this package is obiiter.IBioSequence. An IBioSequence iterator provides batch
of sequences.

54

Basic usage of a sequence iterator

Many functions, among them functions reading sequences from a text file, return a
IBioSequence iterator. The iterator class provides two main methods:

• Next() bool
• Get() obiiter.BioSequenceBatch

The Next method moves the iterator to the next value, while the Get method returns the
currently pointed value. Using them, it is possible to loop over the data as in the following
code chunk.

import (
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiformats"

)

func main() {
mydata := obiformats.ReadFastSeqFromFile("myfile.fasta")

for mydata.Next() {
data := mydata.Get()
//
// Whatever you want to do with the data chunk
//

}
}

An obiseq.BioSequenceBatch instance is a set of sequences stored in an obiseq.BioSequenceSlice
and a sequence number. The number of sequences in a batch is not defined. A batch can
even contain zero sequences, if for example all sequences initially included in the batch have
been filtered out at some stage of their processing.

The Pipable functions

A function consuming a obiiter.IBioSequence and returning a obiiter.IBioSequence is
of class obiiter.Pipable.

The Teeable functions

A function consuming a obiiter.IBioSequence and returning two obiiter.IBioSequence
instance is of class obiiter.Teeable.

55

A Annexes

A.1 Sequence attributes

ali_dir (string)

• Set by the obipairing tool
• The attribute can contain 2 string values left or right.

The alignment generated by obipairing is a 3’-end gap free algorithm. Two cases can occur
when aligning the forward and reverse reads. If the barcode is long enough, both the reads
overlap only on their 3’ ends. In such case, the alignment direction ali_dir is set to left. If
the barcode is shorter than the read length, the paired reads overlap by their 5’ ends, and the
complete barcode is sequenced by both the reads. In that later case, ali_dir is set to right.

ali_length (int)

• Set by the obipairing tool

Length of the aligned parts when merging forward and reverse reads

count (int)

• Set by the obiuniq tool
• Getter : method Count()
• Setter : method SetCount(int)

The count attribute indicates how-many strictly identical reads have been merged in a single
record. It contains an integer value. If it is absent this means that the sequence record
represents a single occurrence of the sequence.

The Count() method allows to access to the count attribute as an integer value. If the count
attribute is not defined for the given sequence, the value 1 is returned

merged_* (map[string]int)

• Set by the obiuniq tool

56

The -m option of the obiuniq tools allows for keeping track of the distribution of the values
stored in given attribute of interest. Often this option is used to summarise distribution of a
sequence variant accross samples when obiuniq is run after running obimultiplex. The actual
name of the attribute depends on the name of the monitored attribute. If -m option is used
with the attribute sample, then this attribute names merged_sample.

mode (string)

• Set by the obipairing tool
• The attribute can contain 2 string values join or alignment.

obitag_ref_index (map[string]string)

• Set by the obirefidx tool.

It resumes to which taxonomic annotation a match to that sequence must lead according to the
number of differences existing between the query sequence and the reference sequence having
that tag.

{"0":"9606@Homo sapiens@species",
"2":"207598@Homininae@subfamily",
"3":"9604@Hominidae@family",
"8":"314295@Hominoidea@superfamily",
"10":"9526@Catarrhini@parvorder",
"12":"1437010@Boreoeutheria@clade",
"16":"9347@Eutheria@clade",
"17":"40674@Mammalia@class",
"22":"117571@Euteleostomi@clade",
"25":"7776@Gnathostomata@clade",
"29":"33213@Bilateria@clade",
"30":"6072@Eumetazoa@clade"}

pairing_mismatches (map[string]string)

• Set by the obipairing tool

seq_a_single (int)

• Set by the obipairing tool

seq_ab_match (int)

• Set by the obipairing tool

seq_b_single (int)

57

• Set by the obipairing tool

score (int)

• Set by the obipairing tool

score_norm (float)

• Set by the obipairing tool
• The value ranges between 0 and 1.

Score of the alignment between forward and reverse reads expressed as a fraction of identity.

58

References
Andersen, Kenneth, Karen Lise Bird, Morten Rasmussen, James Haile, Henrik Breuning-

Madsen, Kurt H Kjaer, Ludovic Orlando, M Thomas P Gilbert, and Eske Willerslev. 2012.
“Meta-barcoding of ëdirtı́DNA from soil reflects vertebrate biodiversity.” Molecular Ecology
21 (8): 1966–79.

Baldwin, Darren S, Matthew J Colloff, Gavin N Rees, Anthony A Chariton, Garth O Watson,
Leon N Court, Diana M Hartley, et al. 2013. “Impacts of inundation and drought on
eukaryote biodiversity in semi-arid floodplain soils.” Molecular Ecology 22 (6): 1746–58.
https://doi.org/10.1111/mec.12190.

Boyer, Frédéric, Céline Mercier, Aurélie Bonin, Yvan Le Bras, Pierre Taberlet, and Eric Coissac.
2016. “obitools: a unix-inspired software package for DNA metabarcoding.” Molecular
Ecology Resources 16 (1): 176–82. https://doi.org/10.1111/1755-0998.12428.

Caporaso, J Gregory, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D Bushman,
Elizabeth K Costello, Noah Fierer, et al. 2010. “QIIME allows analysis of high-throughput
community sequencing data.” Nature Methods 7 (5): 335–36. https://doi.org/10.1038/nm
eth.f.303.

Chariton, Anthony A, Anthony C Roach, Stuart L Simpson, and Graeme E Batley. 2010.
“Influence of the choice of physical and chemistry variables on interpreting patterns of
sediment contaminants and their relationships with estuarine macrobenthic communities.”
Marine and Freshwater Research. https://doi.org/10.1071/mf09263.

Cock, Peter JA, Christopher J Fields, Naohisa Goto, Michael L Heuer, and Peter M Rice.
2010. “The Sanger FASTQ File Format for Sequences with Quality Scores, and the
Solexa/Illumina FASTQ Variants.” Nucleic Acids Research 38 (6): 1767–71.

Deagle, Bruce E, Roger Kirkwood, and Simon N Jarman. 2009. “Analysis of Australian
fur seal diet by pyrosequencing prey DNA in faeces.” Molecular Ecology 18 (9): 2022–38.
https://doi.org/10.1111/j.1365-294X.2009.04158.x.

Kowalczyk, Rafał, Pierre Taberlet, Eric Coissac, Alice Valentini, Christian Miquel, Tomasz
Kamiński, and Jan M Wójcik. 2011. “Influence of management practices on large herbivore
diet—Case of European bison in Białowieża Primeval Forest (Poland).” Forest Ecology and
Management 261 (4): 821–28. https://doi.org/10.1016/j.foreco.2010.11.026.

Lipman, D J, and W R Pearson. 1985. “Rapid and sensitive protein similarity searches.”
Science 227 (4693): 1435–41. http://www.ncbi.nlm.nih.gov/pubmed/2983426.

Parducci, Laura, Tina Jørgensen, Mari Mette Tollefsrud, Ellen Elverland, Torbjørn Alm, So-
nia L Fontana, K D Bennett, et al. 2012. “Glacial survival of boreal trees in northern
Scandinavia.” Science 335 (6072): 1083–86. https://doi.org/10.1126/science.1216043.

Riaz, Tiayyba, Wasim Shehzad, Alain Viari, François Pompanon, Pierre Taberlet, and Eric

59

https://doi.org/10.1111/mec.12190
https://doi.org/10.1111/1755-0998.12428
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1071/mf09263
https://doi.org/10.1111/j.1365-294X.2009.04158.x
https://doi.org/10.1016/j.foreco.2010.11.026
http://www.ncbi.nlm.nih.gov/pubmed/2983426
https://doi.org/10.1126/science.1216043

Coissac. 2011. “ecoPrimers: inference of new DNA barcode markers from whole genome
sequence analysis.” Nucleic Acids Research 39 (21): e145. https://doi.org/10.1093/nar/gk
r732.

Schloss, Patrick D, Sarah L Westcott, Thomas Ryabin, Justine R Hall, Martin Hartmann,
Emily B Hollister, Ryan A Lesniewski, et al. 2009. “Introducing mothur: open-source,
platform-independent, community-supported software for describing and comparing micro-
bial communities.” Applied and Environmental Microbiology 75 (23): 7537–41. https:
//doi.org/10.1128/AEM.01541-09.

Seguritan, V, and F Rohwer. 2001. “FastGroup: a program to dereplicate libraries of 16S
rDNA sequences.” BMC Bioinformatics 2 (October): 9. https://doi.org/10.1186/1471-
2105-2-9.

Shehzad, Wasim, Tiayyba Riaz, Muhammad A Nawaz, Christian Miquel, Carole Poillot, Safdar
A Shah, Francois Pompanon, Eric Coissac, and Pierre Taberlet. 2012. “Carnivore diet
analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus
bengalensis) in Pakistan.” Molecular Ecology 21 (8): 1951–65. https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1365-294X.2011.05424.x.

Sogin, Mitchell L, Hilary G Morrison, Julie A Huber, David Mark Welch, Susan M Huse,
Phillip R Neal, Jesus M Arrieta, and Gerhard J Herndl. 2006. “Microbial diversity in the
deep sea and the underexplored ”rare biosphere”.” Proceedings of the National Academy of
Sciences of the United States of America 103 (32): 12115–20. https://doi.org/10.1073/pn
as.0605127103.

Sønstebø, J H, L Gielly, A K Brysting, R Elven, M Edwards, J Haile, E Willerslev, et al. 2010.
“Using next-generation sequencing for molecular reconstruction of past Arctic vegetation
and climate.” Molecular Ecology Resources 10 (6): 1009–18. https://doi.org/10.1111/j.17
55-0998.2010.02855.x.

Taberlet, Pierre, Eric Coissac, Mehrdad Hajibabaei, and Loren H Rieseberg. 2012. “Envi-
ronmental DNA.” Molecular Ecology 21 (8): 1789–93. https://doi.org/10.1111/j.1365-
294X.2012.05542.x.

Thomsen, Philip Francis, Jos Kielgast, Lars L Iversen, Carsten Wiuf, Morten Rasmussen, M
Thomas P Gilbert, Ludovic Orlando, and Eske Willerslev. 2012. “Monitoring endangered
freshwater biodiversity using environmental DNA.” Molecular Ecology 21 (11): 2565–73.
https://doi.org/10.1111/j.1365-294X.2011.05418.x.

Valentini, Alice, Christian Miquel, Muhammad Ali Nawaz, Eva Bellemain, Eric Coissac,
François Pompanon, Ludovic Gielly, et al. 2009. “New perspectives in diet analysis based
on DNA barcoding and parallel pyrosequencing: the trnL approach.” Molecular Ecology
Resources 9 (1): 51–60. https://doi.org/10.1111/j.1755-0998.2008.02352.x.

Yoccoz, N G, K A Bråthen, L Gielly, J Haile, M E Edwards, T Goslar, H Von Stedingk, et
al. 2012. “DNA from soil mirrors plant taxonomic and growth form diversity.” Molecular
Ecology 21 (15): 3647–55. https://doi.org/10.1111/j.1365-294X.2012.05545.x.

60

https://doi.org/10.1093/nar/gkr732
https://doi.org/10.1093/nar/gkr732
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1186/1471-2105-2-9
https://doi.org/10.1186/1471-2105-2-9
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2011.05424.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2011.05424.x
https://doi.org/10.1073/pnas.0605127103
https://doi.org/10.1073/pnas.0605127103
https://doi.org/10.1111/j.1755-0998.2010.02855.x
https://doi.org/10.1111/j.1755-0998.2010.02855.x
https://doi.org/10.1111/j.1365-294X.2012.05542.x
https://doi.org/10.1111/j.1365-294X.2012.05542.x
https://doi.org/10.1111/j.1365-294X.2011.05418.x
https://doi.org/10.1111/j.1755-0998.2008.02352.x
https://doi.org/10.1111/j.1365-294X.2012.05545.x

	Preface
	The OBITools
	Aims of OBITools
	Installation of the obitools
	Availability of the OBITools
	Prerequisites
	Installation with the install script
	Compilation from sources

	File formats usable with OBITools
	The DNA sequence data
	The IUPAC Code
	The fasta sequence format
	The fastq sequence format
	Sequence quality scores

	File extension

	OBITools V4 Tutorial
	Wolves' diet based on DNA metabarcoding
	Step by step analysis
	Recover full sequence reads from forward and reverse partial reads
	Remove unaligned sequence records
	Assign each sequence record to the corresponding sample/marker combination
	Dereplicate reads into uniq sequences
	Denoise the sequence dataset
	Taxonomic assignment of sequences
	Assign each sequence to a taxon
	Generate the final result table
	Looking at the data in R

	The OBITools V4 commands
	Specifying the data input to OBITools commands
	Specifying input format

	Controling OBITools outputs
	Specifying output format
	The Fasta and Fastq annotations format

	Options common to most of the OBITools commands
	Helpful options
	System related options

	OBITools expression language
	Variables usable in the expression
	Function defined in the language
	Instrospection functions
	Cast functions
	String related functions
	Condition function
	Sequence analysis related function

	Accessing to the sequence annotations

	Metabarcode design and quality assessment
	obipcr

	File format conversions
	obiconvert

	Sequence annotations
	obiannotate
	obitag
	obitagpcr

	Computations on sequences
	obipairing
	Alignment procedure
	The scoring system

	obimultiplex
	obicomplement
	obiclean
	obiuniq

	Sequence sampling and filtering
	obigrep – filters sequence files according to numerous conditions
	The options usable with obigrep

	Utilities
	obicount
	obidistribute
	obifind

	The GO OBITools library
	BioSequence
	Creating new instances
	End of life of a BioSequence instance
	Accessing to the elements of a sequence
	The annotations of a sequence

	The sequence iterator
	Basic usage of a sequence iterator
	The Pipable functions
	The Teeable functions

	Appendices
	Annexes
	Sequence attributes

	References

