# JupyterHub Configuration with OrbStack on Mac (all in Docker)
## Prerequisites
You must have docker running on your computer
- On MacOS, [OrbStack](https://orbstack.dev/ "A Docker implementation optimised for MacOS") is recommanded
## Installation Steps
### Dependencies required by `start-jupyterhub.sh`
The startup script builds the Docker images, renders the course site and moves files into the mounted volumes. Ensure these commands are available before running it:
- `docker` and `docker-compose` with the daemon running (the script calls `docker-compose down`/`up` and `docker build`; Compose V2 plugin is fine if `docker-compose` is present)
- `quarto` CLI to render `web_src` into `jupyterhub_volumes/web` (installers at )
- `python3` for `tools/generate_pdf_galleries.py` and `tools/generate_pages_json.py` (standard library only)
- `git` to clone the repository (optional once the files are on disk)
### 1. Create Directory Structure
```bash
git clone https://forge.metabarcoding.org/MetabarcodingSchool/OBIJupyterHub.git
```
Enter into the `OBIJupyterHub` directory
```bash
cd OBIJupyterHub
```
#### File Structure
Your `OBIJupyterHub` directory should contain:
```
OBIJupyterHub
├── start-jupyterhub.sh - The script used to setup and start the server
├── obijupyterhub - The files describing the docker images and the stack
│ ├── Caddyfile
│ ├── docker-compose.yml
│ ├── Dockerfile
│ ├── Dockerfile.hub
│ ├── jupyterhub_config.py
│ ├── sftpgo_config.json
│ └── start-notebook.sh
├── jupyterhub_volumes - The directory containing the docker volumes
│ ├── caddy
│ ├── course - Read only volume mounted on every student container
│ │ ├── bin
│ │ └── R_packages
│ ├── jupyterhub
│ ├── shared - Read write volume shared in every student container
│ ├── users
│ └── web
│ ├── img
│ │ └── welcome_metabar.webp
│ ├── index.html
│ └── pages
├── Readme.md - This documentation
├── tools
│ ├── generate_pages_json.py
│ └── install_packages.sh
└─── web_src - The quarto document sources used to build the web site
├── _output
├── _quarto.yml
├── 00_home.qmd
├── lectures
│ └── computers
│ └── regex
│ ├── lecture_regex.qmd
│ ├── slides_regex.qmd
│ └── slides.css
└── scripts
└── copy-to-web.sh
```
### 2. Start JupyterHub
From the terminal, in the `OBIJupyterHub` directory, run the following command:
``` bash
./start-jupyterhub.sh
```
### 3. Access JupyterHub
Open your browser and go to: **http://localhost:8888**
You can log in as a student with any username and password: `metabar2025`
## Useful Commands
### View JupyterHub logs
``` bash
cd obijupyterhub
docker-compose logs -f jupyterhub
```
### View all containers (hub + students)
``` bash
docker ps | grep jupyterhub
```
### Stop JupyterHub
``` bash
cd obijupyterhub
docker-compose down
```
### Restart JupyterHub (after config modification)
``` bash
cd obijupyterhub
docker-compose restart jupyterhub
```
### View logs for a specific student
``` bash
docker logs jupyter-
```
Replace `` by the actual username of the student.
### Clean up after lab
``` bash
# Stop and remove all containers
cd obijupyterhub
docker-compose down
# Remove student containers
docker ps -a | grep jupyter- | awk '{print $1}' | xargs docker rm -f
# Remove volumes (WARNING: deletes student data)
docker volume ls | grep jupyterhub-user | awk '{print $2}' | xargs docker volume rm
# Clean everything (containers + volumes + network)
docker-compose down -v
docker ps -a | grep jupyter- | awk '{print $1}' | xargs docker rm -f
docker volume prune -f
```
## Managing Shared Data
### Directory Structure for Each Student
Each student will see this directory structure in their JupyterLab (everything under `work/` is persistent):
```
work/ # Personal workspace root (persistent)
├── [student files] # Their own files and notebooks
├── R_packages/ # Personal R packages (writable by student)
├── shared/ # Shared workspace (read/write, shared with all)
└── course/ # Course files (read-only, managed by admin)
├── R_packages/ # Shared R packages (read-only, installed by prof)
├── bin/ # Shared executables (in PATH)
└── [course materials] # Your course files
```
**R Package Priority:**
1. R checks `work/R_packages/` first (personal, writable)
1. Then `work/course/R_packages/` (shared, read-only, installed by prof)
1. Then system libraries
**Important:** Everything is under `work/`, so all student files are automatically saved in their persistent volume.
### User Accounts
**Admin Account:**
- Username: `admin`
- Password: `admin2025` (change in docker-compose.yml: `JUPYTERHUB_ADMIN_PASSWORD`)
- Can write to `course/` directory
**Student Accounts:**
- Username: any name
- Password: `metabar2025` (change in docker-compose.yml: `JUPYTERHUB_PASSWORD`)
- Read-only access to `course/` directory
### Installing R Packages (Admin Only)
**From your Mac (recommended):**
``` bash
# Install packages
tools/install_packages.sh reshape2 plotly knitr
```
This script: - Installs packages in the `course/R_packages/` directory - All students can use them (read-only) - No need to rebuild the image
**Students can also install their own packages:**
Students can install packages in their personal `work/R_packages/`:
```r
# Install in personal library (each student has their own)
install.packages('mypackage') # Will install in work/R_packages/
```
### Using R Packages (Students)
Students simply load packages normally:
``` r
library(reshape2) # R checks: 1) work/R_packages/ 2) work/course/R_packages/ 3) system
library(plotly)
```
R automatically searches in this order:
1. Personal packages: `/home/jovyan/work/R_packages/` (R_LIBS_USER)
1. Prof packages: `/home/jovyan/work/course/R_packages/` (R_LIBS_SITE)
1. System packages
### List Available Packages
``` r
# List all available packages (personal + course + system)
installed.packages()[,"Package"]
# Check personal packages
list.files("/home/jovyan/work/R_packages")
# Check course packages (installed by prof)
list.files("/home/jovyan/work/course/R_packages")
```
### Deposit Files for Course
To put files in the `course/` directory (accessible read-only):
``` bash
# Create a temporary directory
mkdir -p ~/jupyterhub-tp/course-files
# Copy your files into it
cp my_notebooks.ipynb ~/jupyterhub-tp/course-files/
cp my_data.csv ~/jupyterhub-tp/course-files/
# Copy into Docker volume
docker run --rm \
-v jupyterhub-course:/target \
-v ~/jupyterhub-tp/course-files:/source \
alpine sh -c "cp -r /source/* /target/"
```
### Retrieve Student Work
``` bash
# List user volumes
docker volume ls | grep 'obijupyterhub_user-'
# Copy files from a specific student
docker run --rm \
-v obijupyterhub_user-alice:/source \
-v ~/submissions:/target \
alpine sh -c "cp -r /source/* /target/alice/"
# Copy all shared work
docker run --rm \
-v obijupyterhub_shared:/source \
-v ~/submissions/shared:/target \
alpine sh -c "cp -r /source/* /target/"
```
## User Management
### Option 1: Predefined User List
In `jupyterhub_config.py`, uncomment and modify:
``` python
c.Authenticator.allowed_users = {'student1', 'student2', 'student3'}
```
### Option 2: Allow Everyone (for testing)
By default, the configuration allows any user:
``` python
c.Authenticator.allow_all = True
```
⚠️ **Warning**: DummyAuthenticator is ONLY for local testing!
## Kernel Verification
Once logged in, create a new notebook and verify you have access to:
- **Python 3** (default kernel)
- **R** (R kernel)
- **Bash** (bash kernel)
## Customization for Your Labs
### Add Additional R Packages
Modify the `Dockerfile` (before `USER ${NB_UID}`):
``` dockerfile
RUN R -e "install.packages(c('your_package'), repos='http://cran.rstudio.com/')"
```
Then restart the server (it rebuilds the images if needed):
```bash
./start-jupyterhub.sh
```
### Add Python Packages
Add to the `Dockerfile` (before `USER ${NB_UID}`):
``` dockerfile
RUN pip install numpy pandas matplotlib seaborn
```
### Distribute Files to Students
Create a `files_lab/` directory and add to the `Dockerfile`:
``` dockerfile
COPY files_lab/ /home/${NB_USER}/lab/
RUN chown -R ${NB_UID}:${NB_GID} /home/${NB_USER}/lab
```
### Change Port (if 8000 is occupied)
Modify in `docker-compose.yml`:
``` yaml
ports:
- "8001:8000" # Accessible on localhost:8001
```
## Advantages of This Approach
✅ **Everything in Docker**: No need to install Python/JupyterHub on your computer\
✅ **Portable**: Easy to deploy on another server\
✅ **Isolated**: No pollution of your system environment\
✅ **Easy to Clean**: A simple `docker-compose down` is enough\
✅ **Reproducible**: Students will have exactly the same environment
## Troubleshooting
**Error "Cannot connect to Docker daemon"**:
- Check that OrbStack is running
- Verify the socket exists: `ls -la /var/run/docker.sock`
**Student containers don't start**:
- Check logs: `docker-compose logs jupyterhub`
- Verify student image exists: `docker images | grep jupyterhub-student`
**Port 8000 already in use**:
- Change port in `docker-compose.yml`
**I want to start from scratch**:
``` bash
push obijupyterhub
docker-compose down -v
docker rmi jupyterhub-hub jupyterhub-student
popd
# Then rebuild everything
./start-jupyterhub.sh
```