% Generated by roxygen2: do not edit by hand % Please edit documentation in R/distrib.extrapol.R \name{extrapol.freq} \alias{extrapol.freq} \title{Read frequencies krigging} \usage{ extrapol.freq(x, min.coord, max.coord, grid.grain = 100, coords, otus.table, cutoff = 0.001, return.metabarcoding.data = FALSE) } \arguments{ \item{x}{a vector or matrix from a row-normalized read table \code{\link{metabarcoding.data}} object} \item{min.coord}{a vector of length = 2 indicating the minimum values of x and y coordinates to be used for the predicted grid} \item{max.coord}{a vector of length = 2 indicating the maximum values of x and y coordinates to be used for the predicted grid} \item{grid.grain}{an integer indicating the resolution (i.e. nb of subpoints) in x and y coordinates required for the predicted grid} \item{coords}{a dataframe containing the x and y coordinates of the abundances from x to be extrapolated.} \item{otus.table}{a motus data.frame containing motus informations of x} \item{cutoff}{a cutoff below which abundances are set to 0. This threshold also determines the value to be added to 0 values for log10 transformation} \item{return.metabarcoding.data}{if \code{TRUE}, returns a \code{\link{metabarcoding.data}} object. Default is \code{FALSE}} } \value{ either a dataframe or a S3 object with a structure similar to \code{\link{metabarcoding.data}} object. The number of samples corresponds to the predicted points. The two last columns (if \code{return.metabarcoding.data==F}) or sample data.frame contains x y coordinates of the predicted grid The all but last two columns (if \code{return.metabarcoding.data==F}) or read matrix contains the predicted log10 transformed relative abundances instead of reads counts If \code{return.metabarcoding.data==F} the motus data.frame contains the motus informations from x } \description{ Extrapolates read frequencies from a \code{\link{metabarcoding.data}} object in space for a finer resolution } \examples{ data(termes) #Create dummy spatial coordinates attr(termes, "samples")[c("x", "y")] = expand.grid(1:7,1:3) #compute frequencies attr(termes, "layers")[["reads.freq"]] = normalize(termes, MARGIN=1)$reads # Getting extrapolations termes.pred = extrapol.freq(attr(termes, "layers")[["reads.freq"]], min.coord=c(1,1), max.coord=c(7,3), grid.grain=100,termes$samples[,c("x", "y")], termes$motus, cutoff=1e-3) head(termes.pred$reads) } \seealso{ \code{\link{map.extrapol.freq}} as well as \code{sp} and \code{gstat} packages } \author{ Lucie Zinger }