Files
ecopcr/src/libthermo/nnparams.c
2010-05-23 12:30:16 +00:00

620 lines
21 KiB
C

/*
* nnparams.cpp
* PHunterLib
*
* Nearest Neighbor Model / Parameters
*
* Created by Tiayyba Riaz on 7/2/09.
*
*/
#include <memory.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include"nnparams.h"
static char bpencoder[] = { 1, // A
0, // b
2, // C
0,0,0, // d, e, f
3, // G
0,0,0,0,0,0,0,0,0,0,0,0, // h,i,j,k,l,m,n,o,p,q,r,s
4,0, // T,U
0,0,0,0,0}; // v,w,x,y,z
double forbidden_entropy;
double nparam_GetInitialEntropy(PNNParams nparm)
{
return -5.9f+nparm->rlogc;
}
//Retrieve Enthalpy for given NN-Pair from parameter table
double nparam_GetEnthalpy(PNNParams nparm, char x0, char x1, char y0, char y1)
{
return ndH(x0,x1,y0,y1); //xx, yx are already numbers
}
//Retrieve Entropy for given NN-Pair from parameter table
double nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1)
{
//xx and yx are already numbers
char nx0=x0;//nparam_convertNum(x0);
char nx1=x1;//nparam_convertNum(x1);
char ny0=y0;//nparam_convertNum(y0);
char ny1=y1;//nparam_convertNum(y1);
double answer = ndS(nx0,nx1,ny0,ny1);
/*Salt correction Santalucia*/
if (nparm->saltMethod == SALT_METHOD_SANTALUCIA) {
if(nx0!=5 && 1<= nx1 && nx1<=4) {
answer += 0.5*nparm->kfac;
}
if(ny1!=5 && 1<= ny0 && ny0<=4) {
answer += 0.5*nparm->kfac;
}
}
/*Salt correction Owczarzy*/
if (nparm->saltMethod == SALT_METHOD_OWCZARZY) {
double logk = log(nparm->kplus);
answer += ndH(nx0,nx1,ny0,ny1)*((4.29 * nparm->gcContent-3.95)*0.00001*logk+ 0.0000094*logk*logk);
}
return answer;
}
/* PURPOSE: Return melting temperature TM for given entropy and enthalpy
* Assuming a one-state transition and using the formula
* TM = dH / (dS + R ln(Ct/4))
* entropy = dS + R ln Ct/4 (must already be included!)
* enthaklpy = dH
* where
* dH = enthalpy
* dS = entropy
* R = Boltzmann factor
* Ct = Strand Concentration
*
* PARAMETERS:
* entrypy and enthalpy
*
* RETURN VALUE:
* temperature
*/
double nparam_CalcTM(double entropy,double enthalpy)
{
double tm = 0; // absolute zero - return if model fails!
if (enthalpy>=forbidden_enthalpy) //||(entropy==-cfact))
return 0;
if (entropy<0) // avoid division by zero and model errors!
{
tm = enthalpy/entropy;// - kfac; //LKFEB
if (tm<0)
return 0;
}
return tm;
}
void nparam_InitParams(PNNParams nparm, double c1, double c2, double kp, int sm)
{
nparm->Ct1 = c1;
nparm->Ct2 = c2;
nparm->kplus = kp;
int maxCT = 1;
if(nparm->Ct2 > nparm->Ct1)
{
maxCT = 2;
}
double ctFactor;
if(nparm->Ct1 == nparm->Ct2)
{
ctFactor = nparm->Ct1/2;
}
else if (maxCT == 1)
{
ctFactor = nparm->Ct1-nparm->Ct2/2;
}
else
{
ctFactor = nparm->Ct2-nparm->Ct1/2;
}
nparm->rlogc = R * log(ctFactor);
forbidden_entropy = nparm->rlogc;
nparm->kfac = 0.368 * log (nparm->kplus);
nparm->saltMethod = sm;
int x,y,a,b; // variables used as counters...
// Set all parameters to zero!
memset(nparm->dH,0,sizeof(nparm->dH));
memset(nparm->dS,0,sizeof(nparm->dS));
// Set all X-/Y-, -X/Y- and X-/-Y so, that TM will be VERY small!
for (x=1;x<=4;x++)
{
for (y=1;y<=4;y++)
{
ndH(0,x,y,0)=forbidden_enthalpy;
ndS(0,x,y,0)=forbidden_entropy;
ndH(x,0,0,y)=forbidden_enthalpy;
ndS(x,0,0,y)=forbidden_entropy;
ndH(x,0,y,0)=forbidden_enthalpy;
ndS(x,0,y,0)=forbidden_entropy;
// forbid X-/Y$ and X$/Y- etc., i.e. terminal must not be paired with gap!
ndH(x,5,y,0)=forbidden_enthalpy;
ndS(x,5,y,0)=forbidden_entropy;
ndH(x,0,y,5)=forbidden_enthalpy;
ndS(x,0,y,5)=forbidden_entropy;
ndH(5,x,0,y)=forbidden_enthalpy;
ndS(5,x,0,y)=forbidden_entropy;
ndH(0,x,5,y)=forbidden_enthalpy;
ndS(0,x,5,y)=forbidden_entropy;
// forbid X$/-Y etc.
ndH(x,5,0,y)=forbidden_enthalpy;
ndS(x,5,0,y)=forbidden_entropy;
ndH(x,0,5,y)=forbidden_enthalpy;
ndS(x,0,5,y)=forbidden_entropy;
ndH(5,x,y,0)=forbidden_enthalpy;
ndS(5,x,y,0)=forbidden_entropy;
ndH(0,x,y,5)=forbidden_enthalpy;
ndS(0,x,y,5)=forbidden_entropy;
}
// also, forbid x-/-- and --/x-, i.e. no two inner gaps paired
ndH(x,0,0,0)=forbidden_enthalpy;
ndS(x,0,0,0)=forbidden_entropy;
ndH(0,0,x,0)=forbidden_enthalpy;
ndS(0,0,x,0)=forbidden_entropy;
// x-/-$
ndH(x,0,0,5)=forbidden_enthalpy;
ndS(x,0,0,5)=forbidden_entropy;
ndH(5,0,0,x)=forbidden_enthalpy;
ndS(5,0,0,x)=forbidden_entropy;
ndH(0,5,x,0)=forbidden_enthalpy;
ndS(x,0,0,5)=forbidden_entropy;
ndH(0,x,5,0)=forbidden_enthalpy;
ndS(0,x,5,0)=forbidden_entropy;
}
// forbid --/--
ndH(0,0,0,0)=forbidden_enthalpy;
ndS(0,0,0,0)=forbidden_entropy;
ndH(5,0,0,0)=forbidden_enthalpy;
ndS(5,0,0,0)=forbidden_entropy;
ndH(0,0,5,0)=forbidden_enthalpy;
ndS(0,0,5,0)=forbidden_entropy;
ndH(0,5,5,0)=forbidden_enthalpy;
ndS(0,5,5,0)=forbidden_entropy;
// Interior loops (double Mismatches)
#define iloop_entropy -0.97f
#define iloop_enthalpy 0.0f
for (x=1; x<=4; x++)
for (y=1; y<=4; y++)
for (a=1; a<=4; a++)
for (b=1; b<=4; b++)
// AT and CG pair, and as A=1, C=2, G=3, T=4 this means
// we have Watson-Crick pairs if (x+a==5) and (y+b)==5.
if (!((x+a==5)||(y+b==5)))
{
// No watson-crick-pair, i.e. double mismatch!
// set enthalpy/entropy to loop expansion!
ndH(x,y,a,b) = iloop_enthalpy;
ndS(x,y,a,b) = iloop_entropy;
}
// xy/-- and --/xy (Bulge Loops of size > 1)
#define bloop_entropy -1.3f
#define bloop_enthalpy 0.0f
for (x=1; x<=4; x++)
for (y=1; y<=4; y++)
{
ndH(x,y,0,0) = bloop_enthalpy;
ndS(x,y,0,0) = bloop_entropy;
ndH(0,0,x,y) = bloop_enthalpy;
ndS(0,0,x,y) = bloop_entropy;
}
// x-/ya abd xa/y- as well as -x/ay and ax/-y
// bulge opening and closing parameters with
// adjacent matches / mismatches
// obulge_mism and cbulge_mism chosen so high to avoid
// AAAAAAAAA
// T--G----T
// being better than
// AAAAAAAAA
// TG------T
#define obulge_match_H (-2.66f * 1000)
#define obulge_match_S -14.22f
#define cbulge_match_H (-2.66f * 1000)
#define cbulge_match_S -14.22f
#define obulge_mism_H (0.0f * 1000)
#define obulge_mism_S -6.45f
#define cbulge_mism_H 0.0f
#define cbulge_mism_S -6.45f
for (x=1; x<=4; x++)
for (y=1; y<=4; y++)
for (a=1; a<=4; a++)
{
if (x+y==5) // other base pair matches!
{
ndH(x,0,y,a)=obulge_match_H; // bulge opening
ndS(x,0,y,a)=obulge_match_S;
ndH(x,a,y,0)=obulge_match_H;
ndS(x,a,y,0)=obulge_match_S;
ndH(0,x,a,y)=cbulge_match_H; // bulge closing
ndS(0,x,a,y)=cbulge_match_S;
ndH(a,x,0,y)=cbulge_match_H;
ndS(a,x,0,y)=cbulge_match_S;
}
else
{ // mismatch in other base pair!
ndH(x,0,y,a)=obulge_mism_H; // bulge opening
ndS(x,0,y,a)=obulge_mism_S;
ndH(x,a,y,0)=obulge_mism_H;
ndS(x,a,y,0)=obulge_mism_S;
ndH(0,x,a,y)=cbulge_mism_H; // bulge closing
ndS(0,x,a,y)=cbulge_mism_S;
ndH(a,x,0,y)=cbulge_mism_H;
ndS(a,x,0,y)=cbulge_mism_S;
}
}
// Watson-Crick pairs (note that only ten are unique, as obviously
// 5'-AG-3'/3'-TC-5' = 5'-CT-3'/3'-GA-5' etc.
ndH(1,1,4,4)=-7.6f*1000; ndS(1,1,4,4)=-21.3f; // AA/TT 04
ndH(1,2,4,3)=-8.4f*1000; ndS(1,2,4,3)=-22.4f; // AC/TG adapted GT/CA
ndH(1,3,4,2)=-7.8f*1000; ndS(1,3,4,2)=-21.0f; // AG/TC adapted CT/GA
ndH(1,4,4,1)=-7.2f*1000; ndS(1,4,4,1)=-20.4f; // AT/TA 04
ndH(2,1,3,4)=-8.5f*1000; ndS(2,1,3,4)=-22.7f; // CA/GT 04
ndH(2,2,3,3)=-8.0f*1000; ndS(2,2,3,3)=-19.9f; // CC/GG adapted GG/CC
ndH(2,3,3,2)=-10.6f*1000; ndS(2,3,3,2)=-27.2f; // CG/GC 04
ndH(2,4,3,1)=-7.8f*1000; ndS(2,4,3,1)=-21.0f; // CT/GA 04
ndH(3,1,2,4)=-8.2f*1000; ndS(3,1,2,4)=-22.2f; // GA/CT 04
ndH(3,2,2,3)=-9.8f*1000; ndS(3,2,2,3)=-24.4f; // GC/CG 04
ndH(3,3,2,2)=-8.0f*1000; ndS(3,3,2,2)=-19.9f; // GG/CC 04
ndH(3,4,2,1)=-8.4f*1000; ndS(3,4,2,1)=-22.4f; // GT/CA 04
ndH(4,1,1,4)=-7.2f*1000; ndS(4,1,1,4)=-21.3f; // TA/AT 04
ndH(4,2,1,3)=-8.2f*1000; ndS(4,2,1,3)=-22.2f; // TC/AG adapted GA/CT
ndH(4,3,1,2)=-8.5f*1000; ndS(4,3,1,2)=-22.7f; // TG/AC adapted CA/GT
ndH(4,4,1,1)=-7.6f*1000; ndS(4,4,1,1)=-21.3f; // TT/AA adapted AA/TT
// A-C Mismatches (Values for pH 7.0)
ndH(1,1,2,4)=7.6f*1000; ndS(1,1,2,4)=20.2f; // AA/CT
ndH(1,1,4,2)=2.3f*1000; ndS(1,1,4,2)=4.6f; // AA/TC
ndH(1,2,2,3)=-0.7f*1000; ndS(1,2,2,3)=-3.8f; // AC/CG
ndH(1,2,4,1)=5.3f*1000; ndS(1,2,4,1)=14.6f; // AC/TA
ndH(1,3,2,2)=0.6f*1000; ndS(1,3,2,2)=-0.6f; // AG/CC
ndH(1,4,2,1)=5.3f*1000; ndS(1,4,2,1)=14.6f; // AT/CA
ndH(2,1,1,4)=3.4f*1000; ndS(2,1,1,4)=8.0f; // CA/AT
ndH(2,1,3,2)=1.9f*1000; ndS(2,1,3,2)=3.7f; // CA/GC
ndH(2,2,1,3)=5.2f*1000; ndS(2,2,1,3)=14.2f; // CC/AG
ndH(2,2,3,1)=0.6f*1000; ndS(2,2,3,1)=-0.6f; // CC/GA
ndH(2,3,1,2)=1.9f*1000; ndS(2,3,1,2)=3.7f; // CG/AC
ndH(2,4,1,1)=2.3f*1000; ndS(2,4,1,1)=4.6f; // CT/AA
ndH(3,1,2,2)=5.2f*1000; ndS(3,1,2,2)=14.2f; // GA/CC
ndH(3,2,2,1)=-0.7f*1000; ndS(3,2,2,1)=-3.8f; // GC/CA
ndH(4,1,1,2)=3.4f*1000; ndS(4,1,1,2)=8.0f; // TA/AC
ndH(4,2,1,1)=7.6f*1000; ndS(4,2,1,1)=20.2f; // TC/AA
// C-T Mismatches
ndH(1,2,4,4)=0.7f*1000; ndS(1,2,4,4)=0.2f; // AC/TT
ndH(1,4,4,2)=-1.2f*1000; ndS(1,4,4,2)=-6.2f; // AT/TC
ndH(2,1,4,4)=1.0f*1000; ndS(2,1,4,4)=0.7f; // CA/TT
ndH(2,2,3,4)=-0.8f*1000; ndS(2,2,3,4)=-4.5f; // CC/GT
ndH(2,2,4,3)=5.2f*1000; ndS(2,2,4,3)=13.5f; // CC/TG
ndH(2,3,4,2)=-1.5f*1000; ndS(2,3,4,2)=-6.1f; // CG/TC
ndH(2,4,3,2)=-1.5f*1000; ndS(2,4,3,2)=-6.1f; // CT/GC
ndH(2,4,4,1)=-1.2f*1000; ndS(2,4,4,1)=-6.2f; // CT/TA
ndH(3,2,2,4)=2.3f*1000; ndS(3,2,2,4)=5.4f; // GC/CT
ndH(3,4,2,2)=5.2f*1000; ndS(3,4,2,2)=13.5f; // GT/CC
ndH(4,1,2,4)=1.2f*1000; ndS(4,1,2,4)=0.7f; // TA/CT
ndH(4,2,2,3)=2.3f*1000; ndS(4,2,2,3)=5.4f; // TC/CG
ndH(4,2,1,4)=1.2f*1000; ndS(4,2,1,4)=0.7f; // TC/AT
ndH(4,3,2,2)=-0.8f*1000; ndS(4,3,2,2)=-4.5f; // TG/CC
ndH(4,4,2,1)=0.7f*1000; ndS(4,4,2,1)=0.2f; // TT/CA
ndH(4,4,1,2)=1.0f*1000; ndS(4,4,1,2)=0.7f; // TT/AC
// G-A Mismatches
ndH(1,1,3,4)=3.0f*1000; ndS(1,1,3,4)=7.4f; // AA/GT
ndH(1,1,4,3)=-0.6f*1000; ndS(1,1,4,3)=-2.3f; // AA/TG
ndH(1,2,3,3)=0.5f*1000; ndS(1,2,3,3)=3.2f; // AC/GG
ndH(1,3,3,2)=-4.0f*1000; ndS(1,3,3,2)=-13.2f; // AG/GC
ndH(1,3,4,1)=-0.7f*1000; ndS(1,3,4,1)=-2.3f; // AG/TA
ndH(1,4,3,1)=-0.7f*1000; ndS(1,4,3,1)=-2.3f; // AT/GA
ndH(2,1,3,3)=-0.7f*1000; ndS(2,1,3,3)=-2.3f; // CA/GG
ndH(2,3,3,1)=-4.0f*1000; ndS(2,3,3,1)=-13.2f; // CG/GA
ndH(3,1,1,4)=0.7f*1000; ndS(3,1,1,4)=0.7f; // GA/AT
ndH(3,1,2,3)=-0.6f*1000; ndS(3,1,2,3)=-1.0f; // GA/CG
ndH(3,2,1,3)=-0.6f*1000; ndS(3,2,1,3)=-1.0f; // GC/AG
ndH(3,3,1,2)=-0.7f*1000; ndS(3,3,1,2)=-2.3f; // GG/AC
ndH(3,3,2,1)=0.5f*1000; ndS(3,3,2,1)=3.2f; // GG/CA
ndH(3,4,1,1)=-0.6f*1000; ndS(3,4,1,1)=-2.3f; // GT/AA
ndH(4,1,1,3)=0.7f*1000; ndS(4,1,1,3)=0.7f; // TA/AG
ndH(4,3,1,1)=3.0f*1000; ndS(4,3,1,1)=7.4f; // TG/AA
// G-T Mismatches
ndH(1,3,4,4)=1.0f*1000; ndS(1,3,4,4)=0.9f; // AG/TT
ndH(1,4,4,3)=-2.5f*1000; ndS(1,4,4,3)=-8.3f; // AT/TG
ndH(2,3,3,4)=-4.1f*1000; ndS(2,3,3,4)=-11.7f; // CG/GT
ndH(2,4,3,3)=-2.8f*1000; ndS(2,4,3,3)=-8.0f; // CT/GG
ndH(3,1,4,4)=-1.3f*1000; ndS(3,1,4,4)=-5.3f; // GA/TT
ndH(3,2,4,3)=-4.4f*1000; ndS(3,2,4,3)=-12.3f; // GC/TG
ndH(3,3,2,4)=3.3f*1000; ndS(3,3,2,4)=10.4f; // GG/CT
ndH(3,3,4,2)=-2.8f*1000; ndS(3,3,4,2)=-8.0f; // GG/TC
// ndH(3,3,4,4)=5.8f*1000; ndS(3,3,4,4)=16.3f; // GG/TT
ndH(3,4,2,3)=-4.4f*1000; ndS(3,4,2,3)=-12.3f; // GT/CG
ndH(3,4,4,1)=-2.5f*1000; ndS(3,4,4,1)=-8.3f; // GT/TA
// ndH(3,4,4,3)=4.1f*1000; ndS(3,4,4,3)=9.5f; // GT/TG
ndH(4,1,3,4)=-0.1f*1000; ndS(4,1,3,4)=-1.7f; // TA/GT
ndH(4,2,3,3)=3.3f*1000; ndS(4,2,3,3)=10.4f; // TC/GG
ndH(4,3,1,4)=-0.1f*1000; ndS(4,3,1,4)=-1.7f; // TG/AT
ndH(4,3,3,2)=-4.1f*1000; ndS(4,3,3,2)=-11.7f; // TG/GC
// ndH(4,3,3,4)=-1.4f*1000; ndS(4,3,3,4)=-6.2f; // TG/GT
ndH(4,4,1,3)=-1.3f*1000; ndS(4,4,1,3)=-5.3f; // TT/AG
ndH(4,4,3,1)=1.0f*1000; ndS(4,4,3,1)=0.9f; // TT/GA
// ndH(4,4,3,3)=5.8f*1000; ndS(4,4,3,3)=16.3f; // TT/GG
// A-A Mismatches
ndH(1,1,1,4)=4.7f*1000; ndS(1,1,1,4)=12.9f; // AA/AT
ndH(1,1,4,1)=1.2f*1000; ndS(1,1,4,1)=1.7f; // AA/TA
ndH(1,2,1,3)=-2.9f*1000; ndS(1,2,1,3)=-9.8f; // AC/AG
ndH(1,3,1,2)=-0.9f*1000; ndS(1,3,1,2)=-4.2f; // AG/AC
ndH(1,4,1,1)=1.2f*1000; ndS(1,4,1,1)=1.7f; // AT/AA
ndH(2,1,3,1)=-0.9f*1000; ndS(2,1,3,1)=-4.2f; // CA/GA
ndH(3,1,2,1)=-2.9f*1000; ndS(3,1,2,1)=-9.8f; // GA/CA
ndH(4,1,1,1)=4.7f*1000; ndS(4,1,1,1)=12.9f; // TA/AA
// C-C Mismatches
ndH(1,2,4,2)=0.0f*1000; ndS(1,2,4,2)=-4.4f; // AC/TC
ndH(2,1,2,4)=6.1f*1000; ndS(2,1,2,4)=16.4f; // CA/CT
ndH(2,2,2,3)=3.6f*1000; ndS(2,2,2,3)=8.9f; // CC/CG
ndH(2,2,3,2)=-1.5f*1000; ndS(2,2,3,2)=-7.2f; // CC/GC
ndH(2,3,2,2)=-1.5f*1000; ndS(2,3,2,2)=-7.2f; // CG/CC
ndH(2,4,2,1)=0.0f*1000; ndS(2,4,2,1)=-4.4f; // CT/CA
ndH(3,2,2,2)=3.6f*1000; ndS(3,2,2,2)=8.9f; // GC/CC
ndH(4,2,1,2)=6.1f*1000; ndS(4,2,1,2)=16.4f; // TC/AC
// G-G Mismatches
ndH(1,3,4,3)=-3.1f*1000; ndS(1,3,4,3)=-9.5f; // AG/TG
ndH(2,3,3,3)=-4.9f*1000; ndS(2,3,3,3)=-15.3f; // CG/GG
ndH(3,1,3,4)=1.6f*1000; ndS(3,1,3,4)=3.6f; // GA/GT
ndH(3,2,3,3)=-6.0f*1000; ndS(3,2,3,3)=-15.8f; // GC/GG
ndH(3,3,2,3)=-6.0f*1000; ndS(3,3,2,3)=-15.8f; // GG/CG
ndH(3,3,3,2)=-4.9f*1000; ndS(3,3,3,2)=-15.3f; // GG/GC
ndH(3,4,3,1)=-3.1f*1000; ndS(3,4,3,1)=-9.5f; // GT/GA
ndH(4,3,1,3)=1.6f*1000; ndS(4,3,1,3)=3.6f; // TG/AG
// T-T Mismatches
ndH(1,4,4,4)=-2.7f*1000; ndS(1,4,4,4)=-10.8f; // AT/TT
ndH(2,4,3,4)=-5.0f*1000; ndS(2,4,3,4)=-15.8f; // CT/GT
ndH(3,4,2,4)=-2.2f*1000; ndS(3,4,2,4)=-8.4f; // GT/CT
ndH(4,1,4,4)=0.2f*1000; ndS(4,1,4,4)=-1.5f; // TA/TT
ndH(4,2,4,3)=-2.2f*1000; ndS(4,2,4,3)=-8.4f; // TC/TG
ndH(4,3,4,2)=-5.0f*1000; ndS(4,3,4,2)=-15.8f; // TG/TC
ndH(4,4,1,4)=0.2f*1000; ndS(4,4,1,4)=-1.5f; // TT/AT
ndH(4,4,4,1)=-2.7f*1000; ndS(4,4,4,1)=-10.8f; // TT/TA
// Dangling Ends
ndH(5,1,1,4)=-0.7f*1000; ndS(5,1,1,4)=-0.8f; // $A/AT
ndH(5,1,2,4)=4.4f*1000; ndS(5,1,2,4)=14.9f; // $A/CT
ndH(5,1,3,4)=-1.6f*1000; ndS(5,1,3,4)=-3.6f; // $A/GT
ndH(5,1,4,4)=2.9f*1000; ndS(5,1,4,4)=10.4f; // $A/TT
ndH(5,2,1,3)=-2.1f*1000; ndS(5,2,1,3)=-3.9f; // $C/AG
ndH(5,2,2,3)=-0.2f*1000; ndS(5,2,2,3)=-0.1f; // $C/CG
ndH(5,2,3,3)=-3.9f*1000; ndS(5,2,3,3)=-11.2f; // $C/GG
ndH(5,2,4,3)=-4.4f*1000; ndS(5,2,4,3)=-13.1f; // $C/TG
ndH(5,3,1,2)=-5.9f*1000; ndS(5,3,1,2)=-16.5f; // $G/AC
ndH(5,3,2,2)=-2.6f*1000; ndS(5,3,2,2)=-7.4f; // $G/CC
ndH(5,3,3,2)=-3.2f*1000; ndS(5,3,3,2)=-10.4f; // $G/GC
ndH(5,3,4,2)=-5.2f*1000; ndS(5,3,4,2)=-15.0f; // $G/TC
ndH(5,4,1,1)=-0.5f*1000; ndS(5,4,1,1)=-1.1f; // $T/AA
ndH(5,4,2,1)=4.7f*1000; ndS(5,4,2,1)=14.2f; // $T/CA
ndH(5,4,3,1)=-4.1f*1000; ndS(5,4,3,1)=-13.1f; // $T/GA
ndH(5,4,4,1)=-3.8f*1000; ndS(5,4,4,1)=-12.6f; // $T/TA
ndH(1,5,4,1)=-2.9f*1000; ndS(1,5,4,1)=-7.6f; // A$/TA
ndH(1,5,4,2)=-4.1f*1000; ndS(1,5,4,2)=-13.0f; // A$/TC
ndH(1,5,4,3)=-4.2f*1000; ndS(1,5,4,3)=-15.0f; // A$/TG
ndH(1,5,4,4)=-0.2f*1000; ndS(1,5,4,4)=-0.5f; // A$/TT
ndH(1,1,5,4)=0.2f*1000; ndS(1,1,5,4)=2.3f; // AA/$T
ndH(1,1,4,5)=-0.5f*1000; ndS(1,1,4,5)=-1.1f; // AA/T$
ndH(1,2,5,3)=-6.3f*1000; ndS(1,2,5,3)=-17.1f; // AC/$G
ndH(1,2,4,5)=4.7f*1000; ndS(1,2,4,5)=14.2f; // AC/T$
ndH(1,3,5,2)=-3.7f*1000; ndS(1,3,5,2)=-10.0f; // AG/$C
ndH(1,3,4,5)=-4.1f*1000; ndS(1,3,4,5)=-13.1f; // AG/T$
ndH(1,4,5,1)=-2.9f*1000; ndS(1,4,5,1)=-7.6f; // AT/$A
ndH(1,4,4,5)=-3.8f*1000; ndS(1,4,4,5)=-12.6f; // AT/T$
ndH(2,5,3,1)=-3.7f*1000; ndS(2,5,3,1)=-10.0f; // C$/GA
ndH(2,5,3,2)=-4.0f*1000; ndS(2,5,3,2)=-11.9f; // C$/GC
ndH(2,5,3,3)=-3.9f*1000; ndS(2,5,3,3)=-10.9f; // C$/GG
ndH(2,5,3,4)=-4.9f*1000; ndS(2,5,3,4)=-13.8f; // C$/GT
ndH(2,1,5,4)=0.6f*1000; ndS(2,1,5,4)=3.3f; // CA/$T
ndH(2,1,3,5)=-5.9f*1000; ndS(2,1,3,5)=-16.5f; // CA/G$
ndH(2,2,5,3)=-4.4f*1000; ndS(2,2,5,3)=-12.6f; // CC/$G
ndH(2,2,3,5)=-2.6f*1000; ndS(2,2,3,5)=-7.4f; // CC/G$
ndH(2,3,5,2)=-4.0f*1000; ndS(2,3,5,2)=-11.9f; // CG/$C
ndH(2,3,3,5)=-3.2f*1000; ndS(2,3,3,5)=-10.4f; // CG/G$
ndH(2,4,5,1)=-4.1f*1000; ndS(2,4,5,1)=-13.0f; // CT/$A
ndH(2,4,3,5)=-5.2f*1000; ndS(2,4,3,5)=-15.0f; // CT/G$
ndH(3,5,2,1)=-6.3f*1000; ndS(3,5,2,1)=-17.1f; // G$/CA
ndH(3,5,2,2)=-4.4f*1000; ndS(3,5,2,2)=-12.6f; // G$/CC
ndH(3,5,2,3)=-5.1f*1000; ndS(3,5,2,3)=-14.0f; // G$/CG
ndH(3,5,2,4)=-4.0f*1000; ndS(3,5,2,4)=-10.9f; // G$/CT
ndH(3,1,5,4)=-1.1f*1000; ndS(3,1,5,4)=-1.6f; // GA/$T
ndH(3,1,2,5)=-2.1f*1000; ndS(3,1,2,5)=-3.9f; // GA/C$
ndH(3,2,5,3)=-5.1f*1000; ndS(3,2,5,3)=-14.0f; // GC/$G
ndH(3,2,2,5)=-0.2f*1000; ndS(3,2,2,5)=-0.1f; // GC/C$
ndH(3,3,5,2)=-3.9f*1000; ndS(3,3,5,2)=-10.9f; // GG/$C
ndH(3,3,2,5)=-3.9f*1000; ndS(3,3,2,5)=-11.2f; // GG/C$
ndH(3,4,5,1)=-4.2f*1000; ndS(3,4,5,1)=-15.0f; // GT/$A
ndH(3,4,2,5)=-4.4f*1000; ndS(3,4,2,5)=-13.1f; // GT/C$
ndH(4,5,1,1)=0.2f*1000; ndS(4,5,1,1)=2.3f; // T$/AA
ndH(4,5,1,2)=0.6f*1000; ndS(4,5,1,2)=3.3f; // T$/AC
ndH(4,5,1,3)=-1.1f*1000; ndS(4,5,1,3)=-1.6f; // T$/AG
ndH(4,5,1,4)=-6.9f*1000; ndS(4,5,1,4)=-20.0f; // T$/AT
ndH(4,1,5,4)=-6.9f*1000; ndS(4,1,5,4)=-20.0f; // TA/$T
ndH(4,1,1,5)=-0.7f*1000; ndS(4,1,1,5)=-0.7f; // TA/A$
ndH(4,2,5,3)=-4.0f*1000; ndS(4,2,5,3)=-10.9f; // TC/$G
ndH(4,2,1,5)=4.4f*1000; ndS(4,2,1,5)=14.9f; // TC/A$
ndH(4,3,5,2)=-4.9f*1000; ndS(4,3,5,2)=-13.8f; // TG/$C
ndH(4,3,1,5)=-1.6f*1000; ndS(4,3,1,5)=-3.6f; // TG/A$
ndH(4,4,5,1)=-0.2f*1000; ndS(4,4,5,1)=-0.5f; // TT/$A
ndH(4,4,1,5)=2.9f*1000; ndS(4,4,1,5)=10.4f; // TT/A$
return;
}
int nparam_CountGCContent(char * seq ) {
int lseq = strlen(seq);
int k;
double count = 0;
for( k=0;k<lseq;k++) {
if (seq[k] == 'G' || seq[k] == 'C' ) {
count+=1;
}
}
return count;
}
void nparam_CleanSeq (char* inseq, char* outseq, int len)
{
int seqlen = strlen (inseq);
int i, j;
if (len != 0)
seqlen = len;
outseq[0]='x';
for (i = 0, j = 0; i < seqlen && outseq[0]; i++,j++)
{
switch (inseq[i])
{
case 'a':
case '\0':
case 'A':
outseq[j] = 'A'; break;
case 'c':
case '\1':
case 'C':
outseq[j] = 'C'; break;
case 'g':
case '\2':
case 'G':
outseq[j] = 'G'; break;
case 't':
case '\3':
case 'T':
outseq[j] = 'T'; break;
default:
outseq[0]=0;
}
}
outseq[j] = '\0';
}
//Calculate TM for given sequence against its complement
double nparam_CalcSelfTM(PNNParams nparm, char* seq, int len)
{
const unsigned long long minus1 = 0xFFFFFFFFFFFFFFFFLLU;
const double NaN = *((double*)&minus1);
double thedH = 0;
//double thedS = nparam_GetInitialEntropy(nparm);
double thedS = -5.9f+nparm->rlogc;
double mtemp;
char c1;
char c2;
char c3;
char c4;
unsigned int i;
char nseq[50];
char *useq = seq;
nparam_CleanSeq (seq, nseq, len);
if (!nseq[0])
return NaN;
useq = nseq;
for ( i=1;i<len;i++)
{
c1 = GETREVCODE(useq[i-1]); //nparam_getComplement(seq[i-1],1);
c2 = GETREVCODE(useq[i]); //nparam_getComplement(seq[i],1);
c3 = GETNUMCODE(useq[i-1]);
c4 = GETNUMCODE(useq[i]);
thedH += nparm->dH[c3][c4][c1][c2];//nparam_GetEnthalpy(nparm, c3,c4,c1,c2);
thedS += nparam_GetEntropy(nparm, c3,c4,c1,c2);
}
//printf("------------------\n");
mtemp = nparam_CalcTM(thedS,thedH);
//fprintf(stderr,"Enthalpy: %f, entropy: %f, seq: %s rloc=%f\n", thedH, thedS, useq, nparm->rlogc);
//exit (0);
return mtemp;
}
double nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len)
{
const unsigned long long minus1 = 0xFFFFFFFFFFFFFFFFLLU;
const double NaN = *((double*)&minus1);
double thedH = 0;
//double thedS = nparam_GetInitialEntropy(nparm);
double thedS = -5.9f+nparm->rlogc;
double mtemp;
char c1;
char c2;
char c3;
char c4;
unsigned int i;
char nseq1[50];
char nseq2[50];
char *useq1;
char *useq2;
nparam_CleanSeq (seq1, nseq1, len);
if (!nseq1[0])
return NaN;
useq1 = nseq1;
nparam_CleanSeq (seq2, nseq2, len);
if (!nseq2[0])
return NaN;
useq2 = nseq2;
//fprintf (stderr,"Primer : %s\n",useq);
for ( i=1;i<len;i++)
{
c1 = GETREVCODE(useq2[i-1]); //nparam_getComplement(seq[i-1],1);
c2 = GETREVCODE(useq2[i]); //nparam_getComplement(seq[i],1);
c3 = GETNUMCODE(useq1[i-1]);
c4 = GETNUMCODE(useq1[i]);
//fprintf (stderr,"Primer : %s %f %f %d %d, %d %d %f\n",useq,thedH,thedS,(int)c3,(int)c4,(int)c1,(int)c2,nparam_GetEnthalpy(nparm, c3,c4,c1,c2));
thedH += nparm->dH[c3][c4][c1][c2];//nparam_GetEnthalpy(nparm, c3,c4,c1,c2);
thedS += nparam_GetEntropy(nparm, c3,c4,c1,c2);
}
//fprintf(stderr,"------------------\n");
mtemp = nparam_CalcTM(thedS,thedH);
//if (mtemp == 0)
//{
// fprintf(stderr,"Enthalpy: %f, entropy: %f, seq: %s\n", thedH, thedS, useq);
//exit (0);
//}
return mtemp;
}
double calculateMeltingTemperatureBasic (char * seq) {
int gccount;
double temp;
int seqlen;
seqlen = strlen (seq);
gccount = nparam_CountGCContent (seq);
temp = 64.9 + 41*(gccount - 16.4)/seqlen;
return temp;
}