Revert previous commit

git-svn-id: https://www.grenoble.prabi.fr/svn/LECASofts/ecoPrimers/trunk@261 60f365c0-8329-0410-b2a4-ec073aeeaa1d
This commit is contained in:
2010-06-15 05:03:20 +00:00
parent b3d6acae76
commit 0f4f2a74fe
7 changed files with 66 additions and 667 deletions

View File

@ -1,15 +1,15 @@
EXEC=ecoprobe
EXEC=ecoPrimer
PRIMER_SRC= ecoprobe.c
PRIMER_SRC= ecoprimer.c
PRIMER_OBJ= $(patsubst %.c,%.o,$(PRIMER_SRC))
SRCS= $(PRIMER_SRC)
LIB= -lecoprobe -lecoPCR -lthermo -lz -lm
LIB= -lecoprimer -lecoPCR -lthermo -lz -lm
LIBFILE= libecoPCR/libecoPCR.a \
libecoprobe/libecoprobe.a \
libecoprimer/libecoprimer.a \
libthermo/libthermo.a \
@ -21,13 +21,13 @@ all: $(EXEC)
########
#
# ecoprobe compilation
# ecoPrimer compilation
#
########
# executable compilation and link
ecoprobe: $(PRIMER_OBJ) $(LIBFILE)
ecoPrimer: $(PRIMER_OBJ) $(LIBFILE)
$(CC) $(LDFLAGS) -O5 -m64 -o $@ $< $(LIBPATH) $(LIB)
@ -40,8 +40,8 @@ ecoprobe: $(PRIMER_OBJ) $(LIBFILE)
libecoPCR/libecoPCR.a:
$(MAKE) -C libecoPCR
libecoprobe/libecoprobe.a:
$(MAKE) -C libecoprobe
libecoprimer/libecoprimer.a:
$(MAKE) -C libecoprimer
libthermo/libthermo.a:
$(MAKE) -C libthermo
@ -56,7 +56,7 @@ clean:
rm -f *.o
rm -f $(EXEC)
$(MAKE) -C libecoPCR clean
$(MAKE) -C libecoprobe clean
$(MAKE) -C libecoprimer clean
$(MAKE) -C libthermo clean

View File

@ -1,534 +0,0 @@
/*
* ecoprobe.c
*
* Created on: 20 March. 2010
* Author:
*/
#include "libecoprobe/ecoprobe.h"
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <getopt.h>
#include <time.h>
#include <sys/time.h>
#include <dlfcn.h>
#include"libthermo/nnparams.h"
#include"libthermo/thermostats.h"
void printprobes (pecodnadb_t seqdb,uint32_t seqdbsize, pprobecount_t pprobes, poptions_t options);
#define VERSION "0.1"
/* TR: by default, statistics are made on species level*/
#define DEFAULTTAXONRANK "species"
void* lib_handle = NULL;
float (*calcMelTemp)(char*, char*);
/* ----------------------------------------------- */
/* printout help */
/* ----------------------------------------------- */
#define PP fprintf(stdout,
static void PrintHelp()
{
PP "------------------------------------------\n");
PP " ecoprobe Version %s\n", VERSION);
PP "------------------------------------------\n");
PP "synopsis : finding probes and measureing the quality of barcode region\n");
PP "usage: ./ecoprobe [options] \n");
PP "------------------------------------------\n");
PP "options:\n");
PP "-d : [D]atabase : to match the expected format, the database\n");
PP " has to be formated first by the ecoPCRFormat.py program located.\n");
PP " in the ecoPCR/tools directory.\n");
PP " ecoPCRFormat.py creates three file types :\n");
PP " .sdx : contains the sequences\n");
PP " .tdx : contains information concerning the taxonomy\n");
PP " .rdx : contains the taxonomy rank\n\n");
PP " ecoprobe needs all the file type. As a result, you have to write the\n");
PP " database radical without any extension. For example /ecoprobeDB/fstvert\n\n");
PP "-e : [E]rror : max error allowed by oligonucleotide (0 by default)\n\n");
PP "-h : [H]elp - print <this> help\n\n");
PP "-i : [I]gnore the given taxonomy id (define the counterexample taxon set).\n\n");
PP "-r : [R]estricts the search to the given taxonomic id (restrict the example taxon set).\n\n");
PP "-E : [E]xception taxid allows to indicate than some subclade of example sequences are conterexamples.\n\n");
PP "-c : Consider that the database sequences are [c]ircular\n\n");
PP "-3 : Three prime strict match\n\n");
PP "-q : Strict matching [q]uorum, percentage of the sequences in which strict primers are found. By default it is 70\n\n");
PP "-s : [S]ensitivity quorum\n\n");
PP "-t : required [t]axon level for results, by default the results are computed at species level\n\n");
PP "-x : false positive quorum\n\n");
PP "-D : set in [d]ouble strand mode\n\n");
PP "-O : set the primer length (default 18) \n\n");
PP "-S : Set in [s]ingle strand mode\n\n");
PP "-m : Salt correction method for Tm computation (SANTALUCIA : 1 or OWCZARZY:2, default=1)\n\n");
PP "-a : Salt contentration in M for Tm computation (default 0.05 M)\n\n");
PP "-U : No multi match\n\n");
PP "-R : Define the [R]eference sequence identifier (must be part of example set)\n\n");
PP "-A : Print the list of all identifier of sequences present in the database\n\n");
PP "-f : Remove data mining step during strict primer identification\n\n");
PP "-v : Store statistic file about memory usage during strict primer identification\n\n");
PP "\n");
PP "------------------------------------------\n");
PP "Table result description : \n");
PP "column 1 : serial number\n");
PP "column 2 : probe\n");
PP "column 3 : amplified example sequence count\n");
PP "column 4 : amplified counterexample sequence count\n");
PP "column 5 : probe Tm without mismatch\n");
PP "column 6 : probe lowest Tm against exemple sequences\n");
PP "column 7 : amplified length on left side\n");
PP "column 8 : specificity of left amplifia\n");
PP "column 9 : amplified length on right side\n");
PP "column 10 : specificity of right amplifia\n");
PP "------------------------------------------\n");
PP " http://www.grenoble.prabi.fr/trac/ecoprobe/\n");
PP "------------------------------------------\n\n");
PP "\n");
}
static void ExitUsage(int stat)
{
PP "usage: ecoprobe [-d database] [-e value] [-r taxid] [-i taxid] [-R rank] [-t taxon level]\n");
PP "type \"ecoprobe -h\" for help\n");
if (stat)
exit(stat);
}
#undef PP
void initoptions(poptions_t options)
{
options->statistics=FALSE;
options->filtering=TRUE;
options->error_max=3; //**< maximum error count in fuzzy search
options->primer_length=18; //**< minimal length of the primers
options->restricted_taxid=NULL; //**< limit amplification below these taxid
options->ignored_taxid=NULL; //**< no amplification below these taxid
options->exception_taxid=NULL; //**< no amplification below these taxid
options->prefix=NULL;
options->reference=NULL;
options->refseq=NULL;
options->circular=1;
options->doublestrand=1;
options->strict_quorum=0.7;
options->strict_exclude_quorum=0.1;
options->sensitivity_quorum=0.9;
options->false_positive_quorum=0.1;
options->strict_three_prime=0;
options->r=0;
options->g=0;
options->e=0;
options->no_multi_match=FALSE;
options->pnparm = NULL;
strcpy(options->taxonrank, DEFAULTTAXONRANK); /*taxon level for results, species by default*/
options->saltmethod = SALT_METHOD_SANTALUCIA;
options->salt = DEF_SALT;
options->printAC=FALSE;
/*probe parameters*/
options->amp_len_guess = 100; /*Just a guess of the length for fast search*/
options->probe_specificity = 0.6; /*minimum value of acceptable specificity percent*/
}
/*updateseqparams: This function counts the insample and outsample sequences
* and with each sequences adds a tag of the taxon to which the sequence beongs*/
void updateseqparams (pecodnadb_t seqdb, uint32_t seqdbsize, ecotaxonomy_t *taxonomy,
poptions_t options, int32_t *insamples, int32_t *outsamples)
{
uint32_t i;
int32_t taxid;
ecotx_t *tmptaxon;
for (i=0;i<seqdbsize;i++)
{
seqdb[i]->isexample=isExampleTaxon(taxonomy,seqdb[i]->taxid,options);
if (seqdb[i]->isexample)
(*insamples)++;
else
(*outsamples)++;
taxid = taxonomy->taxons->taxon[seqdb[i]->taxid].taxid;
tmptaxon = eco_findtaxonbytaxid(taxonomy, taxid);
if (tmptaxon)
tmptaxon = eco_findtaxonatrank(tmptaxon, options->taxonrankidx);
if (tmptaxon)
seqdb[i]->ranktaxonid = tmptaxon->taxid;
}
}
void setresulttaxonrank (ecotaxonomy_t *taxonomy, poptions_t options)
{
int32_t i;
/*set taxon rank for which result is to be given*/
for (i = 0; i < taxonomy->ranks->count; i++)
{
if (strcmp(taxonomy->ranks->label[i], options->taxonrank) == 0)
{
options->taxonrankidx = i;
break;
}
}
if (i == taxonomy->ranks->count)
{
fprintf(stderr,"\nUnknown taxon level: '%s'\n", options->taxonrank);
exit(0);
}
}
/* to get db stats, totals of species, genus etc....*/
static void printAC(pecodnadb_t seqdb,uint32_t seqdbsize)
{
uint32_t i;
for (i=0; i< seqdbsize;i++)
printf("%15s : %s\n",seqdb[i]->AC,seqdb[i]->DE);
}
int main(int argc, char **argv)
{
pecodnadb_t seqdb; /* of type ecoseq_t */
uint32_t seqdbsize=0;
ecotaxonomy_t *taxonomy;
options_t options;
int carg;
int32_t errflag=0;
int32_t insamples=0;
int32_t outsamples=0;
uint32_t i;
pwordcount_t words;
pprimercount_t primers;
ppairtree_t pairs;
int32_t rankdbstats = 0;
CNNParams nnparams;
probecount_t probes;
initoptions(&options);
while ((carg = getopt(argc, argv, "hAfvcUDSE:d:e:i:r:R:q:3:s:x:t:O:m:a:")) != -1) {
switch (carg) {
/* ---------------------------- */
case 'v': /* Store statistic file about memory usage during strict primer identification */
/* ---------------------------- */
options.statistics=TRUE;
break;
/* ---------------------------- */
case 'f': /* Remove data mining step during strict primer identification */
/* ---------------------------- */
options.filtering=FALSE;
break;
/* ---------------------------- */
case 'A': /* Print the list of all identifier of sequences present in the database */
/* ---------------------------- */
options.printAC=TRUE;
break;
/* -------------------- */
case 'd': /* database name */
/* -------------------- */
options.prefix = ECOMALLOC(strlen(optarg)+1,
"Error on prefix allocation");
strcpy(options.prefix,optarg);
break;
/* -------------------- */
case 'h': /* help */
/* -------------------- */
PrintHelp();
exit(0);
break;
/* -------------------- */
case 'e': /* error max */
/* -------------------- */
sscanf(optarg,"%d",&(options.error_max));
break;
/* ------------------------ */
case '3': /* three prime strict match */
/* ------------------------ */
sscanf(optarg,"%d",&(options.strict_three_prime));
break;
/* -------------------- */
case 'q': /* strict matching quorum */
/* -------------------- */
sscanf(optarg,"%f",&(options.strict_quorum));
break;
/* -------------------- */
case 's': /* sensitivity quorum */
/* -------------------- */
sscanf(optarg,"%f",&(options.sensitivity_quorum));
break;
/* -------------------- */
case 't': /* required taxon level for results */
/* -------------------- */
strncpy(options.taxonrank, optarg, 19);
options.taxonrank[19] = 0;
break;
/* -------------------- */
case 'x': /* false positive quorum */
/* -------------------- */
sscanf(optarg,"%f",&(options.false_positive_quorum));
break;
/* ---------------------------- */
case 'D': /* set in double strand mode */
/* ---------------------------- */
options.doublestrand=1;
break;
/* ---------------------------- */
case 'S': /* set in single strand mode */
/* ---------------------------- */
options.doublestrand=0;
break;
/* ---------------------------- */
case 'U': /* set in single strand mode */
/* ---------------------------- */
options.no_multi_match=TRUE;
break;
/* ------------------------------------------ */
case 'r': /* stores the restricting search taxonomic id */
/* ------------------------------------------ */
options.restricted_taxid = ECOREALLOC(options.restricted_taxid,sizeof(int32_t)*(options.r+1),
"Error on restricted_taxid reallocation");
sscanf(optarg,"%d",&(options.restricted_taxid[options.r]));
options.r++;
break;
/* ------------------------------------------ */
case 'E': /* stores the restricting search taxonomic id */
/* ------------------------------------------ */
options.exception_taxid = ECOREALLOC(options.exception_taxid,sizeof(int32_t)*(options.e+1),
"Error on exception_taxid reallocation");
sscanf(optarg,"%d",&(options.exception_taxid[options.e]));
options.e++;
break;
/* -------------------- */
case 'R': /* reference sequence */
/* -------------------- */
options.reference = ECOMALLOC(strlen(optarg)+1,
"Error on prefix allocation");
strcpy(options.reference,optarg);
break;
/* --------------------------------- */
case 'i': /* stores the taxonomic id to ignore */
/* --------------------------------- */
options.ignored_taxid = ECOREALLOC(options.ignored_taxid,sizeof(int32_t)*(options.g+1),
"Error on excluded_taxid reallocation");
sscanf(optarg,"%d",&(options.ignored_taxid[options.g]));
options.g++;
break;
/* --------------------------------- */
case 'O': /* set primer size */
/* --------------------------------- */
sscanf(optarg,"%d",&(options.primer_length));
break;
/* --------------------------------- */
case 'm': /* set salt method */
/* --------------------------------- */
sscanf(optarg,"%d",&(options.saltmethod));
break;
/* --------------------------------- */
case 'a': /* set salt */
/* --------------------------------- */
sscanf(optarg,"%f",&(options.salt));
break;
/* -------------------- */
case 'c': /* sequences are circular */
/* --------------------------------- */
options.circular = 1;
break;
case '?': /* bad option */
/* -------------------- */
errflag++;
}
}
options.pnparm = &nnparams;
if (options.saltmethod != 2) //if not SALT_METHOD_OWCZARZY
options.saltmethod = SALT_METHOD_SANTALUCIA; //then force SALT_METHOD_SANTALUCIA
if (options.salt < 0.01 || options.salt > 0.3) //if salt value out of literature values
options.salt = DEF_SALT; //set to default
nparam_InitParams(&nnparams, DEF_CONC_PRIMERS,DEF_CONC_SEQUENCES,options.salt,options.saltmethod);
fprintf(stderr,"Reading taxonomy database ...");
taxonomy = read_taxonomy(options.prefix,0);
fprintf(stderr,"Ok\n");
setresulttaxonrank(taxonomy, &options); /*TR: set rank level for statistics*/
fprintf(stderr,"Reading sequence database ...\n");
seqdb = readdnadb(options.prefix,taxonomy,&seqdbsize, &options);
if (options.printAC)
{
printAC(seqdb,seqdbsize);
exit(0);
}
if (options.reference)
for (i=0; i < seqdbsize;i++)
if (strcmp(seqdb[i]->AC,options.reference)==0)
{
options.refseq=seqdb[i];
options.refseqid=i;
fprintf(stderr,"Reference sequence %s identified\n",options.reference);
}
fprintf(stderr,"Ok\n");
fprintf(stderr,"Sequence read : %d\n",(int32_t)seqdbsize);
updateseqparams(seqdb, seqdbsize, taxonomy, &options, &insamples , &outsamples);
options.dbsize=seqdbsize;
options.insamples=insamples;
options.outsamples=outsamples;
rankdbstats = getrankdbstats(seqdb, seqdbsize, taxonomy, &options);
fprintf(stderr,"Database is constituted of %5d examples corresponding to %5d %s\n",insamples,
options.intaxa,options.taxonrank);
fprintf(stderr," and %5d counterexamples corresponding to %5d %s\n",outsamples,
options.outtaxa,options.taxonrank);
fprintf(stderr,"Total distinct %s count %d\n",options.taxonrank, rankdbstats);
fprintf(stderr,"\nIndexing words in sequences\n");
words = lookforStrictPrimer(seqdb,seqdbsize,insamples,&options);
fprintf(stderr,"\n Strict primer count : %d\n",words->size);
if (options.no_multi_match)
{
(void)filterMultiStrictPrimer(words);
fprintf(stderr,"\n Strict primer with single match count : %d\n",words->size);
}
fprintf(stderr,"\n\n Primer sample : \n");
for (i=0; i<MINI(10,words->size); i++)
fprintf(stderr," + Primer : %s sequence count : %d\n",ecoUnhashWord(words->words[i],options.primer_length),words->strictcount[i]);
fprintf(stderr,"\nEncoding sequences for fuzzy pattern matching...\n");
for (i=0;i<seqdbsize;i++)
{
encodeSequence(seqdb[i]);
fprintf(stderr," Encoded sequences %5d/%5d \r",(int32_t)i+1,(int32_t)seqdbsize);
}
ECOFREE(words->strictcount,"Free strict primer count table");
primers = lookforAproxPrimer(seqdb,seqdbsize,insamples,words,&options);
ECOFREE(words->words,"Free strict primer table");
ECOFREE(words,"Free strict primer structure");
fprintf(stderr,"\n\n Approximate repeats :%d \n", primers->size);
fprintf(stderr,"\n\n Primer sample : \n");
for (i=0; i<MINI(10,primers->size); i++)
fprintf(stderr," + Primer : %s example sequence count : %5d counterexample sequence count : %5d status : %s\n",ecoUnhashWord(primers->primers[i].word,options.primer_length),
primers->primers[i].inexample,
primers->primers[i].outexample,
primers->primers[i].good ? "good":"bad");
fprintf(stderr,"\n");
probes = buildprobes (seqdb, seqdbsize, primers, &options);
printprobes (seqdb, seqdbsize, &probes, &options);
return 0;
}
void printprobes (pecodnadb_t seqdb,uint32_t seqdbsize, pprobecount_t pprobes, poptions_t options)
{
uint32_t i, j;
uint32_t count;
char wrd[32];
char *c;
word_t w;
getProbeThermoProperties (seqdb, seqdbsize, pprobes, options);
for (i = 0; i < pprobes->size; i++)
{
w = pprobes->probes[i].primer->word;
count = 0;
for (j = 0; j < seqdbsize; j++)
count += pprobes->probes[i].primer->directCount[j];
//if occures only on reverse positions then take reverse complement
if (count == 0)
w = ecoComplementWord(w,options->primer_length);
c = ecoUnhashWord(w,options->primer_length);
strcpy (wrd, c);
//print serial number
printf("%6d\t",i);
//print probe
printf("%s\t", wrd);
//print in example count
printf("%d\t",pprobes->probes[i].primer->inexample);
//print out example count
printf("%d\t", pprobes->probes[i].primer->outexample);
//print primer1 melting temperature
printf ("\t%3.1f", pprobes->probes[i].ptemp);
//print minimum melting temperature of approximate versions of probe
printf ("\t%3.1f", pprobes->probes[i].pmintemp);
//left length
printf("\t%d",pprobes->probes[i].llength);
//left specificity
printf("\t%0.2f",pprobes->probes[i].lspecificity);
//right length
printf("\t%d",pprobes->probes[i].rlength);
//right specificity
printf("\t%0.2f\n",pprobes->probes[i].rspecificity);
}
}

View File

@ -1,5 +1,5 @@
MACHINE=MAC_OS_X
LIBPATH= -Llibapat -LlibecoPCR -Llibecoprobe -Llibthermo
LIBPATH= -Llibapat -LlibecoPCR -Llibecoprimer -Llibthermo
MAKEDEPEND = gcc -D$(MACHINE) -M $(CPPFLAGS) -o $*.d $<
CC=gcc

View File

@ -15,31 +15,31 @@
#include"nnparams.h"
float forbidden_entropy;
double forbidden_entropy;
float nparam_GetInitialEntropy(PNNParams nparm)
double nparam_GetInitialEntropy(PNNParams nparm)
{
return -5.9f+nparm->rlogc;
}
//Retrieve Enthalpy for given NN-Pair from parameter table
float nparam_GetEnthalpy(PNNParams nparm, char x0, char x1, char y0, char y1)
double nparam_GetEnthalpy(PNNParams nparm, char x0, char x1, char y0, char y1)
{
return ndH(x0,x1,y0,y1); //xx, yx are already numbers
}
//Retrieve Entropy for given NN-Pair from parameter table
float nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1)
double nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1)
{
//xx and yx are already numbers
char nx0=x0;//nparam_convertNum(x0);
char nx1=x1;//nparam_convertNum(x1);
char ny0=y0;//nparam_convertNum(y0);
char ny1=y1;//nparam_convertNum(y1);
float answer = ndS(nx0,nx1,ny0,ny1);
double answer = ndS(nx0,nx1,ny0,ny1);
/*Salt correction Santalucia*/
if (nparm->saltMethod == SALT_METHOD_SANTALUCIA) {
if(nx0!=5 && 1<= nx1 && nx1<=4) {
@ -51,7 +51,7 @@ float nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1)
}
/*Salt correction Owczarzy*/
if (nparm->saltMethod == SALT_METHOD_OWCZARZY) {
float logk = log(nparm->kplus);
double logk = log(nparm->kplus);
answer += ndH(nx0,nx1,ny0,ny1)*((4.29 * nparm->gcContent-3.95)*0.00001*logk+ 0.0000094*logk*logk);
}
return answer;
@ -75,9 +75,9 @@ float nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1)
* temperature
*/
float nparam_CalcTM(float entropy,float enthalpy)
double nparam_CalcTM(double entropy,double enthalpy)
{
float tm = 0; // absolute zero - return if model fails!
double tm = 0; // absolute zero - return if model fails!
if (enthalpy>=forbidden_enthalpy) //||(entropy==-cfact))
return 0;
if (entropy<0) // avoid division by zero and model errors!
@ -90,7 +90,7 @@ float nparam_CalcTM(float entropy,float enthalpy)
}
void nparam_InitParams(PNNParams nparm, float c1, float c2, float kp, int sm)
void nparam_InitParams(PNNParams nparm, double c1, double c2, double kp, int sm)
{
nparm->Ct1 = c1;
nparm->Ct2 = c2;
@ -100,7 +100,7 @@ void nparam_InitParams(PNNParams nparm, float c1, float c2, float kp, int sm)
{
maxCT = 2;
}
float ctFactor;
double ctFactor;
if(nparm->Ct1 == nparm->Ct2)
{
ctFactor = nparm->Ct1/2;
@ -461,7 +461,7 @@ void nparam_InitParams(PNNParams nparm, float c1, float c2, float kp, int sm)
int nparam_CountGCContent(char * seq ) {
int lseq = strlen(seq);
int k;
float count = 0;
double count = 0;
for( k=0;k<lseq;k++) {
if (seq[k] == 'G' || seq[k] == 'C' ) {
count+=1;
@ -478,38 +478,42 @@ void nparam_CleanSeq (char* inseq, char* outseq, int len)
if (len != 0)
seqlen = len;
for (i = 0, j = 0; i < seqlen; i++)
outseq[0]='x';
for (i = 0, j = 0; i < seqlen && outseq[0]; i++,j++)
{
switch (inseq[i])
{
case 'a':
case '\0':
case 'A':
outseq[j++] = 'A'; break;
outseq[j] = 'A'; break;
case 'c':
case '\1':
case 'C':
outseq[j++] = 'C'; break;
outseq[j] = 'C'; break;
case 'g':
case '\2':
case 'G':
outseq[j++] = 'G'; break;
outseq[j] = 'G'; break;
case 't':
case '\3':
case 'T':
outseq[j++] = 'T'; break;
outseq[j] = 'T'; break;
default:
outseq[0]=0;
}
}
outseq[j] = '\0';
}
//Calculate TM for given sequence against its complement
float nparam_CalcSelfTM(PNNParams nparm, char* seq, int len)
double nparam_CalcSelfTM(PNNParams nparm, char* seq, int len)
{
float thedH = 0;
//float thedS = nparam_GetInitialEntropy(nparm);
float thedS = -5.9f+nparm->rlogc;
float mtemp;
double thedH = 0;
//double thedS = nparam_GetInitialEntropy(nparm);
double thedS = -5.9f+nparm->rlogc;
double mtemp;
char c1;
char c2;
char c3;
@ -534,20 +538,17 @@ float nparam_CalcSelfTM(PNNParams nparm, char* seq, int len)
}
//printf("------------------\n");
mtemp = nparam_CalcTM(thedS,thedH);
//if (mtemp == 0)
//{
// fprintf(stderr,"Enthalpy: %f, entropy: %f, seq: %s\n", thedH, thedS, useq);
//fprintf(stderr,"Enthalpy: %f, entropy: %f, seq: %s rloc=%f\n", thedH, thedS, useq, nparm->rlogc);
//exit (0);
//}
return mtemp;
}
float nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len)
double nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len)
{
float thedH = 0;
//float thedS = nparam_GetInitialEntropy(nparm);
float thedS = -5.9f+nparm->rlogc;
float mtemp;
double thedH = 0;
//double thedS = nparam_GetInitialEntropy(nparm);
double thedS = -5.9f+nparm->rlogc;
double mtemp;
char c1;
char c2;
char c3;
@ -587,9 +588,9 @@ float nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len)
return mtemp;
}
float calculateMeltingTemperatureBasic (char * seq) {
double calculateMeltingTemperatureBasic (char * seq) {
int gccount;
float temp;
double temp;
int seqlen;
seqlen = strlen (seq);

View File

@ -31,7 +31,7 @@
#define GETREVCODE(a) 5-bpencoder[a - 'A']
extern float forbidden_entropy;
extern double forbidden_entropy;
static char bpencoder[] = { 1, // A
0, // b
@ -45,28 +45,28 @@ static char bpencoder[] = { 1, // A
typedef struct CNNParams_st
{
float Ct1;
float Ct2;
float rlogc;
float kplus;
float kfac;
double Ct1;
double Ct2;
double rlogc;
double kplus;
double kfac;
int saltMethod;
float gcContent;
float new_TM;
float dH[6][6][6][6]; // A-C-G-T + gap + initiation (dangling end, $ sign)
float dS[6][6][6][6];
double gcContent;
double new_TM;
double dH[6][6][6][6]; // A-C-G-T + gap + initiation (dangling end, $ sign)
double dS[6][6][6][6];
}CNNParams, * PNNParams;
void nparam_InitParams(PNNParams nparm, float c1, float c2, float kp, int sm);
void nparam_InitParams(PNNParams nparm, double c1, double c2, double kp, int sm);
int nparam_CountGCContent(char * seq );
float nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1);
float nparam_GetEnthalpy(PNNParams nparm, char x0, char x1, char y0, char y1);
float nparam_CalcTM(float entropy,float enthalpy);
float nparam_CalcSelfTM(PNNParams nparm, char* seq, int len);
float nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len);
double nparam_GetEntropy(PNNParams nparm, char x0, char x1, char y0, char y1);
double nparam_GetEnthalpy(PNNParams nparm, char x0, char x1, char y0, char y1);
double nparam_CalcTM(double entropy,double enthalpy);
double nparam_CalcSelfTM(PNNParams nparm, char* seq, int len);
double nparam_CalcTwoTM(PNNParams nparm, char* seq1, char* seq2, int len);
float nparam_GetInitialEntropy(PNNParams nparm) ;
float calculateMeltingTemperatureBasic (char * seq);
double nparam_GetInitialEntropy(PNNParams nparm) ;
double calculateMeltingTemperatureBasic (char * seq);
//void getThermoProperties (ppair_t* pairs, size_t count, poptions_t options);
#endif

View File

@ -26,7 +26,7 @@ word_t extractSite(char* sequence, size_t begin, size_t length, bool_t strand)
return site;
}
/*void getThermoProperties (ppair_t* pairs, size_t count, poptions_t options)
void getThermoProperties (ppair_t* pairs, size_t count, poptions_t options)
{
size_t i, j,k,l;
uint32_t bp1,bp2;
@ -39,7 +39,7 @@ word_t extractSite(char* sequence, size_t begin, size_t length, bool_t strand)
char prmrd[50];
char prmrr[50];
char sqsite[50];
float mtemp;
double mtemp;
for (i = 0; i < count; i++)
{
@ -112,71 +112,4 @@ word_t extractSite(char* sequence, size_t begin, size_t length, bool_t strand)
}
}
}*/
void getProbeThermoProperties (pecodnadb_t seqdb,uint32_t seqdbsize, pprobecount_t pprobs, poptions_t options)
{
size_t i, j,k;
uint32_t bp1,bp2;
word_t w;
//word_t wtmp;
bool_t strand;
char *sq;
char prmr[50];
float mtemp;
for (i = 0; i < pprobs->size; i++)
{
w = pprobs->probes[i].primer->word;
//wtmp = ecoComplementWord(w1,options->primer_length);
//if (wtmp > w) w = wtmp;
strncpy(prmr,ecoUnhashWord(w, options->primer_length),options->primer_length);
prmr[options->primer_length]=0;
pprobs->probes[i].ptemp = nparam_CalcSelfTM (options->pnparm, prmr, options->primer_length) - 273.0;
pprobs->probes[i].pmintemp = 100;
for (j = 0; j < seqdbsize; j++)
{
if (!seqdb[j]->isexample) continue;
sq = seqdb[j]->SQ;
if (pprobs->probes[i].primer->directCount[j] > 0)
{
strand = TRUE;
for (k = 0; k < pprobs->probes[i].primer->directCount[j]; k++)
{
bp1 = (pprobs->probes[i].primer->directCount[j] > 1)? pprobs->probes[i].primer->directPos[j].pointer[k] : pprobs->probes[i].primer->directPos[j].value;
mtemp = nparam_CalcTwoTM(options->pnparm,
prmr,
ecoUnhashWord(extractSite(sq,bp1,options->primer_length,strand),options->primer_length),
options->primer_length) - 273.0;
if (mtemp < pprobs->probes[i].pmintemp)
pprobs->probes[i].pmintemp = mtemp;
}
}
if (pprobs->probes[i].primer->reverseCount[j] > 0)
{
strand = FALSE;
for (k = 0; k < pprobs->probes[i].primer->directCount[j]; k++)
{
bp1 = (pprobs->probes[i].primer->reverseCount[j] > 1)? pprobs->probes[i].primer->reversePos[j].pointer[k] : pprobs->probes[i].primer->reversePos[j].value;
mtemp = nparam_CalcTwoTM(options->pnparm,
prmr,
ecoUnhashWord(extractSite(sq,bp1,options->primer_length,strand),options->primer_length),
options->primer_length) - 273.0;
if (mtemp < pprobs->probes[i].pmintemp)
pprobs->probes[i].pmintemp = mtemp;
}
}
}
}
}

View File

@ -1,10 +1,9 @@
#ifndef THERMOSTATS_H_
#define THERMOSTATS_H_
#include "../libecoprobe/ecoprobe.h"
#include "../libecoprimer/ecoprimer.h"
//void getThermoProperties (ppair_t* pairs, size_t count, poptions_t options);
void getThermoProperties (ppair_t* pairs, size_t count, poptions_t options);
word_t extractSite(char* sequence, size_t begin, size_t length, bool_t strand);
void getProbeThermoProperties (pecodnadb_t seqdb,uint32_t seqdbsize, pprobecount_t pprobs, poptions_t options);
#endif