Files
obitools4/pkg/obialign/alignment.go

235 lines
5.9 KiB
Go

// obialign : function for aligning two sequences
//
// The obialign package provides a set of functions
// foor aligning two objects of type obiseq.BioSequence.
package obialign
import (
"fmt"
"math"
"strings"
"sync"
"git.metabarcoding.org/lecasofts/go/obitools/pkg/obiseq"
)
// A pool of byte slices.
var _BuildAlignArenaPool = sync.Pool{
New: func() interface{} {
bs := make([]byte, 0, 300)
return &bs
},
}
// It takes two sequences, a path, a gap character, and two buffers, and it builds the alignment by
// walking the path and copying the sequences into the buffers
func _BuildAlignment(seqA, seqB []byte, path []int, gap byte, bufferA, bufferB *[]byte) {
*bufferA = (*bufferA)[:0]
*bufferB = (*bufferB)[:0]
lp := len(path)
posA := 0
posB := 0
for i := 0; i < lp; i++ {
step := path[i]
if step < 0 {
*bufferA = append(*bufferA, seqA[posA:(posA-step)]...)
for j := 0; j < -step; j++ {
*bufferB = append(*bufferB, gap)
}
posA -= step
}
if step > 0 {
*bufferB = append(*bufferB, seqB[posB:(posB+step)]...)
for j := 0; j < step; j++ {
*bufferA = append(*bufferA, gap)
}
posB += step
}
i++
step = path[i]
if step > 0 {
*bufferA = append(*bufferA, seqA[posA:(posA+step)]...)
*bufferB = append(*bufferB, seqB[posB:(posB+step)]...)
posA += step
posB += step
}
}
}
// BuildAlignment builds the aligned sequences from an alignemnt path
// returned by one of the alignment procedure.
// The user has to provide both sequences (seqA and seqB), the alignment
// path (path), the symbole used to materialiaze gaps (gap) which is
// usually the dash '-', and a BuildAlignArena (arena). It is always possible
// to provide the NilBuildAlignArena instance for this last parameter.
// In that case an arena will be allocated by the function but, it will not
// be reusable for other alignments and desallocated at the BuildAlignment
// return.
func BuildAlignment(seqA, seqB *obiseq.BioSequence,
path []int, gap byte) (*obiseq.BioSequence, *obiseq.BioSequence) {
bufferSA := obiseq.GetSlice(seqA.Len())
defer obiseq.RecycleSlice(&bufferSA)
bufferSB := obiseq.GetSlice(seqB.Len())
defer obiseq.RecycleSlice(&bufferSB)
_BuildAlignment(seqA.Sequence(), seqB.Sequence(), path, gap,
&bufferSA,
&bufferSB)
seqA = obiseq.NewBioSequence(seqA.Id(),
bufferSA,
seqA.Definition())
seqB = obiseq.NewBioSequence(seqB.Id(),
bufferSB,
seqB.Definition())
return seqA, seqB
}
// func _logSlice(x *[]byte) {
// l := len(*x)
// if l > 10 {
// l = 10
// }
// log.Printf("%v (%10s): slice=%p array=%p cap=%d len=%d\n", (*x)[:l], string((*x)[:l]), x, (*x), cap(*x), len(*x))
// }
// BuildQualityConsensus builds the consensus sequences corresponding to an
// alignement between two sequences.
// The consensus is built from an alignemnt path returned by one of the
// alignment procedure and the quality score associated to the sequence.
// In case of mismatches the nucleotide with the best score is conserved
// in the consensus. In case of score equality, an IUPAC symbol correesponding
// to the ambiguity is used.
// The user has to provide both sequences (seqA and seqB), the alignment
// path (path), and two BuildAlignArena (arena1 and arena2). It is always possible
// to provide the NilBuildAlignArena instance for these two last parameters.
// In that case arenas will be allocated by the function but, they will not
// be reusable for other alignments and desallocated at the BuildQualityConsensus
// return.
func BuildQualityConsensus(seqA, seqB *obiseq.BioSequence, path []int, statOnMismatch bool) (*obiseq.BioSequence, int) {
bufferSA := obiseq.GetSlice(seqA.Len())
bufferSB := obiseq.GetSlice(seqB.Len())
defer obiseq.RecycleSlice(&bufferSB)
bufferQA := obiseq.GetSlice(seqA.Len())
bufferQB := obiseq.GetSlice(seqB.Len())
defer obiseq.RecycleSlice(&bufferQB)
_BuildAlignment(seqA.Sequence(), seqB.Sequence(), path, ' ',
&bufferSA, &bufferSB)
// log.Printf("#1 %s--> la : %d,%p lb : %d,%p qa : %d,%p qb : %d,%p\n", stamp,
// len(*bufferSA), bufferSA, len(*bufferSB), bufferSB,
// len(*bufferQA), bufferQA, len(*bufferQB), bufferQB)
_BuildAlignment(seqA.Qualities(), seqB.Qualities(), path, byte(0),
&bufferQA, &bufferQB)
// log.Printf("#2 %s--> la : %d,%p lb : %d,%p qa : %d,%p qb : %d,%p\n", stamp,
// len(*bufferSA), bufferSA, len(*bufferSB), bufferSB,
// len(*bufferQA), bufferQA, len(*bufferQB), bufferQB)
// log.Printf("#3 %s--> la : %d lb : %d, qa : %d qb : %d\n", stamp, len(sA), len(sB), len(qsA), len(qsB))
var qA, qB byte
var qM, qm byte
var i int
mismatches := make(map[string]int)
match := 0
for i, qA = range bufferQA {
nA := bufferSA[i]
nB := bufferSB[i]
qB = bufferQB[i]
if statOnMismatch && nA != nB && nA != ' ' && nB != ' ' {
mismatches[strings.ToUpper(fmt.Sprintf("(%c:%02d)->(%c:%02d)", nA, qA, nB, qB))] = i + 1
}
if qA > qB {
qM = qA
qm = qB
}
if qB > qA {
bufferSA[i] = bufferSB[i]
qM = qB
qm = qA
}
if qB == qA && nA != nB {
nuc := _FourBitsBaseCode[nA&31] | _FourBitsBaseCode[nB&31]
bufferSA[i] = _FourBitsBaseDecode[nuc]
}
q := qA + qB
if qA > 0 && qB > 0 {
if nA != nB {
q = qM - byte(math.Log10(1-math.Pow(10, -float64(qm)/30))*10+0.5)
}
if nA == nB {
match++
}
}
if q > 90 {
q = 90
}
bufferQA[i] = q
}
consSeq := obiseq.NewBioSequence(
seqA.Id(),
bufferSA,
seqA.Definition(),
)
consSeq.SetQualities(bufferQA)
if statOnMismatch && len(mismatches) > 0 {
consSeq.SetAttribute("pairing_mismatches", mismatches)
}
return consSeq, match
}
// func BuildCigar(seqA, seqB *obiseq.BioSequence, path []int) string {
// lp := len(path)
// posA := 0
// posB := 0
// oldStep := ' '
// kstep := ' '
// for i := 0; i < lp; i++ {
// step := path[i]
// if step < 0 {
// kstep='D'
// posA -= step
// }
// if step > 0 {
// kstep='I'
// posB += step
// }
// i++
// step = path[i]
// if step > 0 {
// kstep = 'M'
// posA += step
// posB += step
// }
// }
// }