Files
obitools4/pkg/obistats/kmeans.go

494 lines
14 KiB
Go

package obistats
import (
"math"
"sync"
"time"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/sampleuv"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obilog"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obiutils"
log "github.com/sirupsen/logrus"
)
// SquareDist calculates the squared Euclidean distance between
// two vectors 'a' and 'b'.
//
// 'a' and 'b' are slices of float64 or int values representing
// coordinate points in space. It is assumed that both slices
// have the same length.
// Returns the calculated squared distance as a float64.
func SquareDist[T float64 | int](a, b []T) T {
sum := T(0)
for i, v := range a {
diff := v - b[i]
sum += diff * diff
}
return sum
}
// EuclideanDist calculates the Euclidean distance between
// two vectors represented as slices of float64.
//
// `a` and `b` are slices of float64 where each element of `a`
// is paired with the corresponding element of `b`.
// Returns the squared sum of the differences.
func EuclideanDist[T float64 | int](a, b []T) float64 {
return math.Sqrt(float64(SquareDist(a, b)))
}
// DefaultRG creates and returns a new instance of *rand.Rand.
//
// No parameters.
// Returns *rand.Rand which is a pointer to a new random number
// generator, seeded with the current time in nanoseconds.
func DefaultRG() *rand.Rand {
return rand.New(rand.NewSource(uint64(time.Now().UnixNano())))
}
type KmeansClustering struct {
data *obiutils.Matrix[float64] // data matrix dimensions: n x p
distmin []float64 // distance to closest center dimension: n
classes []int // class of each data point dimension: n
rg *rand.Rand // random number generator
centers obiutils.Matrix[float64] // centers coordinates dimensions: k x p
icenters []int // indices of centers dimension: k
sizes []int // number of elements in each cluster dimension: k
}
// MakeKmeansClustering initializes a KmeansClustering with the
// provided matrix data, number of clusters k, and random number
// generator rg.
//
// data is a pointer to a Matrix of float64 representing the dataset,
// k is the number of desired clusters, and rg is a pointer to a
// random number generator used in the clustering process.
// Returns a pointer to the initialized KmeansClustering structure.
func MakeKmeansClustering(data *obiutils.Matrix[float64], k int, rg *rand.Rand) *KmeansClustering {
distmin := make([]float64, len(*data))
classes := make([]int, len(*data))
for i := 0; i < len(distmin); i++ {
distmin[i] = math.MaxFloat64
classes[i] = -1
}
clustering := &KmeansClustering{
data: data,
distmin: distmin,
classes: classes,
rg: rg,
centers: make(obiutils.Matrix[float64], 0, k),
icenters: make([]int, 0, k),
sizes: make([]int, 0, k),
}
for i := 0; i < k; i++ {
clustering.AddACenter()
}
return clustering
}
// K returns the number of clusters in the K-means clustering algorithm.
//
// No parameters.
// Returns an integer.
func (clustering *KmeansClustering) K() int {
return len(clustering.icenters)
}
// N returns the size of the dataset in the KmeansClustering instance.
//
// It does not take any parameters.
// The return type is an integer.
func (clustering *KmeansClustering) N() int {
return len(*clustering.data)
}
// Dimension returns the dimension of the KmeansClustering data.
//
// No parameters.
// Returns an integer representing the dimension of the data.
func (clustering *KmeansClustering) Dimension() int {
return len((*clustering.data)[0])
}
// SetCenterTo sets the center of a specific cluster to a given data point index.
//
// Parameters:
// - k: the index of the cluster, if k=-1, a new center is added
// - i: the index of the data point
// - reset: a boolean indicating whether to reset the distances to the nearest center
// for points previously assigned to this center
//
// No return value.
func (clustering *KmeansClustering) SetCenterTo(k, i int, reset bool) {
N := clustering.N()
K := clustering.K()
center := (*clustering.data)[i]
if k >= 0 {
clustering.icenters[k] = i
clustering.sizes[k] = 0
clustering.centers[k] = center
if reset {
// Recompute distances to the nearest center for points
// previously assigned to this center
K := clustering.K()
for j := 0; j < N; j++ {
if clustering.classes[j] == k {
clustering.distmin[j] = math.MaxFloat64
for l := 1; l < K; l++ {
dist := EuclideanDist((*clustering.data)[j], clustering.centers[l])
if dist < clustering.distmin[j] {
clustering.distmin[j] = dist
clustering.classes[j] = l
}
}
clustering.sizes[clustering.classes[j]]++
}
}
}
} else {
clustering.icenters = append(clustering.icenters, i)
clustering.sizes = append(clustering.sizes, 0)
clustering.centers = append(clustering.centers, center)
k = K
K++
}
for j := 0; j < clustering.N(); j++ {
dist := EuclideanDist((*clustering.data)[j], center)
if dist < clustering.distmin[j] {
if C := clustering.classes[j]; C >= 0 {
clustering.sizes[C]--
}
clustering.distmin[j] = dist
clustering.classes[j] = k
clustering.sizes[k]++
}
}
}
// AddACenter adds a new center to the KmeansClustering.
//
// If there are no centers, it randomly selects a new center.
// If there are existing centers, it selects a new center with
// probability proportional to its distance from the nearest
// center. The center is then added to the clustering.
func (clustering *KmeansClustering) AddACenter() {
k := clustering.K()
C := 0
if k == 0 {
// if there are no centers yet, draw a sample as the first center
C = rand.Intn(clustering.N())
} else {
// otherwise, draw a sample with a probability proportional
// to its closest distance to a center
w := sampleuv.NewWeighted(clustering.distmin, clustering.rg)
C, _ = w.Take()
}
clustering.SetCenterTo(-1, C, false)
}
// ResetEmptyCenters reinitializes any centers in a KmeansClustering
// that have no assigned points.
//
// This method iterates over the centers and uses a weighted sampling
// to reset centers with a size of zero.
// Returns the number of centers that were reset.
func (clustering *KmeansClustering) ResetEmptyCenters() int {
nreset := 0
for i := 0; i < clustering.K(); i++ {
if clustering.sizes[i] == 0 {
w := sampleuv.NewWeighted(clustering.distmin, clustering.rg)
C, _ := w.Take()
clustering.SetCenterTo(i, C, false)
nreset++
}
}
return nreset
}
// ClosestPoint finds the index of the closest point in the
// clustering to the given coordinates.
//
// coordinates is a slice of float64 representing the point.
// Returns the index of the closest point as an int.
func (clustering *KmeansClustering) ClosestPoint(coordinates []float64) int {
N := clustering.N()
distmin := math.MaxFloat64
C := -1
for i := 0; i < N; i++ {
dist := EuclideanDist((*clustering.data)[i], coordinates)
if dist < distmin {
distmin = dist
C = i
}
}
return C
}
// AssignToClass assigns each data point in the dataset to the nearest
// center (class) in a K-means clustering algorithm.
//
// Handles the reinitialization of empty centers after the assignment.
// No return values.
func (clustering *KmeansClustering) AssignToClass() {
var wg sync.WaitGroup
var lock sync.Mutex
// initialize the number of points in each class
for i := 0; i < clustering.K(); i++ {
clustering.sizes[i] = 0
}
goroutine := func(i int) {
defer wg.Done()
dmin := math.MaxFloat64
cmin := -1
for j, center := range clustering.centers {
dist := EuclideanDist((*clustering.data)[i], center)
if dist < dmin {
dmin = dist
cmin = j
}
}
clustering.classes[i] = cmin
clustering.distmin[i] = dmin
lock.Lock()
clustering.sizes[cmin]++
lock.Unlock()
}
wg.Add(clustering.N())
for i := 0; i < clustering.N(); i++ {
go goroutine(i)
}
wg.Wait()
nreset := clustering.ResetEmptyCenters()
if nreset > 0 {
obilog.Warnf("Reseted %d empty centers", nreset)
}
}
// SetCentersTo assigns new centers in the KmeansClustering
// structure given a slice of indices.
//
// The indices parameter is a slice of integers that
// corresponds to the new indices of the cluster centers in
// the dataset. It panics if any index is out of bounds.
// This method does not return any value.
func (clustering *KmeansClustering) SetCentersTo(indices []int) {
for _, v := range indices {
if v < 0 || v >= clustering.N() {
log.Fatalf("Invalid center index: %d", v)
}
}
clustering.icenters = indices
K := len(indices)
for i := 0; i < K; i++ {
clustering.centers[i] = (*clustering.data)[indices[i]]
}
clustering.AssignToClass()
}
// ComputeCenters calculates the centers of the K-means clustering algorithm.
//
// This method call AssignToClass() after computing the centers to ensure coherence
// of the clustering data structure.
//
// It takes no parameters.
// It does not return any values.
func (clustering *KmeansClustering) ComputeCenters() {
var wg sync.WaitGroup
centers := clustering.centers
data := clustering.data
classes := clustering.classes
K := clustering.K()
// compute the location of center of class centerIdx
// as the point in the data the closest to the
// center of class centerIdx
newCenter := func(centerIdx int) {
defer wg.Done()
center := make([]float64, clustering.Dimension())
for j := range center {
center[j] = 0
}
for j, row := range *data {
if classes[j] == centerIdx {
for l, val := range row {
center[l] += val
}
}
}
for j := range centers[centerIdx] {
center[j] /= float64(clustering.sizes[centerIdx])
}
C := clustering.ClosestPoint(center)
centers[centerIdx] = (*data)[C]
clustering.icenters[centerIdx] = C
}
for i := 0; i < K; i++ {
wg.Add(1)
go newCenter(i)
}
wg.Wait()
clustering.AssignToClass()
}
func (clustering *KmeansClustering) Inertia() float64 {
inertia := 0.0
for i := 0; i < clustering.N(); i++ {
inertia += clustering.distmin[i] * clustering.distmin[i]
}
return inertia
}
func (clustering *KmeansClustering) Centers() obiutils.Matrix[float64] {
return clustering.centers
}
func (clustering *KmeansClustering) CentersIndices() []int {
return clustering.icenters
}
func (clustering *KmeansClustering) Sizes() []int {
return clustering.sizes
}
func (clustering *KmeansClustering) Classes() []int {
return clustering.classes
}
func (clustering *KmeansClustering) Run(max_cycle int, threshold float64) bool {
prev := math.MaxFloat64
newI := clustering.Inertia()
for i := 0; i < max_cycle && (prev-newI) > threshold; i++ {
prev = newI
clustering.ComputeCenters()
newI = clustering.Inertia()
}
return (prev - newI) <= threshold
}
// // Kmeans performs the K-means clustering algorithm on the given data.
// // if centers and *center is not nil, centers is considered as initialized
// // and the number of classes (k) is set to the number of rows in centers.
// // overwise, the number of classes is defined by the value of k.
// // Parameters:
// // - data: A pointer to a Matrix[float64] that represents the input data.
// // - k: An integer that specifies the number of clusters to create.
// // - threshold: A float64 value that determines the convergence threshold.
// // - centers: A pointer to a Matrix[float64] that represents the initial cluster centers.
// // Returns:
// // - classes: A slice of integers that assigns each data point to a cluster.
// // - centers: A pointer to a Matrix[float64] that contains the final cluster centers.
// // - inertia: A float64 value that represents the overall inertia of the clustering.
// // - converged: A boolean value indicating whether the algorithm converged.
// func Kmeans(data *obiutils.Matrix[float64],
// k int,
// threshold float64,
// centers *obiutils.Matrix[float64]) ([]int, *obiutils.Matrix[float64], float64, bool) {
// if centers == nil || *centers == nil {
// *centers = obiutils.Make2DArray[float64](k, len((*data)[0]))
// center_ids := SampleIntWithoutReplacement(k, len(*data))
// for i, id := range center_ids {
// (*centers)[i] = (*data)[id]
// }
// } else {
// k = len(*centers)
// }
// classes := AssignToClass(data, centers)
// centers = ComputeCenters(data, k, classes)
// inertia := ComputeInertia(data, classes, centers)
// delta := threshold * 100.0
// for i := 0; i < 100 && delta > threshold; i++ {
// classes = AssignToClass(data, centers)
// centers = ComputeCenters(data, k, classes)
// newi := ComputeInertia(data, classes, centers)
// delta = inertia - newi
// inertia = newi
// log.Debugf("Inertia: %f, delta: %f", inertia, delta)
// }
// return classes, centers, inertia, delta < threshold
// }
// // KmeansBestRepresentative finds the best representative among the data point of each cluster in parallel.
// //
// // It takes a matrix of data points and a matrix of centers as input.
// // The best representative is the data point that is closest to the center of the cluster.
// // Returns an array of integers containing the index of the best representative for each cluster.
// func KmeansBestRepresentative(data *obiutils.Matrix[float64], centers *obiutils.Matrix[float64]) []int {
// bestRepresentative := make([]int, len(*centers))
// var wg sync.WaitGroup
// wg.Add(len(*centers))
// for j, center := range *centers {
// go func(j int, center []float64) {
// defer wg.Done()
// bestDistToCenter := math.MaxFloat64
// best := -1
// for i, row := range *data {
// dist := 0.0
// for d, val := range row {
// diff := val - center[d]
// dist += diff * diff
// }
// if dist < bestDistToCenter {
// bestDistToCenter = dist
// best = i
// }
// }
// if best == -1 {
// log.Fatalf("No representative found for cluster %d", j)
// }
// bestRepresentative[j] = best
// }(j, center)
// }
// wg.Wait()
// return bestRepresentative
// }