Files
obitools4/pkg/obistats/kmeans.go
Eric Coissac d29f82a28d Update kmeans.go
Former-commit-id: 910a94ea5a5a0514a30ff3549c4cf71c13d4577b
2023-12-01 16:45:47 +01:00

248 lines
6.6 KiB
Go

package obistats
import (
"math"
"sync"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obiutils"
log "github.com/sirupsen/logrus"
)
// AssignToClass applies the nearest neighbor algorithm to assign data points to classes.
//
// Parameters:
// - data: a 2D slice of float64 representing the data points to be assigned.
// - centers: a 2D slice of float64 representing the center points for each class.
//
// Return:
// - classes: a slice of int representing the assigned class for each data point.
func AssignToClass(data, centers *obiutils.Matrix[float64]) []int {
classes := make([]int, len(*data))
numData := len(*data)
numCenters := len(*centers)
var wg sync.WaitGroup
wg.Add(numData)
for i := 0; i < numData; i++ {
go func(i int) {
defer wg.Done()
minDist := math.MaxFloat64
minDistIndex := -1
rowData := (*data)[i]
for j := 0; j < numCenters; j++ {
centerData := (*centers)[j]
dist := 0.0
for d, val := range rowData {
diff := val - centerData[d]
dist += diff * diff
}
if dist < minDist {
minDist = dist
minDistIndex = j
}
}
classes[i] = minDistIndex
}(i)
}
wg.Wait()
return classes
}
// ComputeCenters calculates the centers of clusters for a given data set.
//
// Parameters:
// - data: a pointer to a matrix of float64 values representing the data set.
// - k: an integer representing the number of clusters.
// - classes: a slice of integers representing the assigned cluster for each data point.
//
// Returns:
// - centers: a pointer to a matrix of float64 values representing the centers of the clusters.
// ComputeCenters calculates the centers of clusters for a given data set.
//
// Parameters:
// - data: a pointer to a matrix of float64 values representing the data set.
// - k: an integer representing the number of clusters.
// - classes: a slice of integers representing the assigned cluster for each data point.
//
// Returns:
// - centers: a pointer to a matrix of float64 values representing the centers of the clusters.
func ComputeCenters(data *obiutils.Matrix[float64], k int, classes []int) *obiutils.Matrix[float64] {
centers := obiutils.Make2DNumericArray[float64](k, len((*data)[0]), true)
ns := make([]int, k)
var wg sync.WaitGroup
for i := range ns {
ns[i] = 0
}
// Goroutine code
goroutine := func(centerIdx int) {
defer wg.Done()
for j, row := range *data {
class := classes[j]
if class == centerIdx {
ns[centerIdx]++
for l, val := range row {
centers[centerIdx][l] += val
}
}
}
}
for i := 0; i < k; i++ {
wg.Add(1)
go goroutine(i)
}
wg.Wait()
for i := range centers {
for j := range centers[i] {
centers[i][j] /= float64(ns[i])
}
}
return &centers
}
// ComputeInertia computes the inertia of the given data and centers in parallel.
//
// Parameters:
// - data: A pointer to a Matrix of float64 representing the data.
// - classes: A slice of int representing the class labels for each data point.
// - centers: A pointer to a Matrix of float64 representing the centers.
//
// Return type:
// - float64: The computed inertia.
func ComputeInertia(data *obiutils.Matrix[float64], classes []int, centers *obiutils.Matrix[float64]) float64 {
inertia := make(chan float64)
numRows := len(*data)
wg := sync.WaitGroup{}
wg.Add(numRows)
for i := 0; i < numRows; i++ {
go func(i int) {
defer wg.Done()
row := (*data)[i]
class := classes[i]
center := (*centers)[class]
inertiaLocal := 0.0
for j, val := range row {
diff := val - center[j]
inertiaLocal += diff * diff
}
inertia <- inertiaLocal
}(i)
}
go func() {
wg.Wait()
close(inertia)
}()
totalInertia := 0.0
for localInertia := range inertia {
totalInertia += localInertia
}
return totalInertia
}
// Kmeans performs the K-means clustering algorithm on the given data.
//
// if centers and *center is not nil, centers is considered as initialized
// and the number of classes (k) is set to the number of rows in centers.
// overwise, the number of classes is defined by the value of k.
//
// Parameters:
// - data: A pointer to a Matrix[float64] that represents the input data.
// - k: An integer that specifies the number of clusters to create.
// - threshold: A float64 value that determines the convergence threshold.
// - centers: A pointer to a Matrix[float64] that represents the initial cluster centers.
//
// Returns:
// - classes: A slice of integers that assigns each data point to a cluster.
// - centers: A pointer to a Matrix[float64] that contains the final cluster centers.
// - inertia: A float64 value that represents the overall inertia of the clustering.
// - converged: A boolean value indicating whether the algorithm converged.
func Kmeans(data *obiutils.Matrix[float64],
k int,
threshold float64,
centers *obiutils.Matrix[float64]) ([]int, *obiutils.Matrix[float64], float64, bool) {
if centers == nil || *centers == nil {
*centers = obiutils.Make2DArray[float64](k, len((*data)[0]))
center_ids := SampleIntWithoutReplacement(k, len(*data))
for i, id := range center_ids {
(*centers)[i] = (*data)[id]
}
} else {
k = len(*centers)
}
classes := AssignToClass(data, centers)
centers = ComputeCenters(data, k, classes)
inertia := ComputeInertia(data, classes, centers)
delta := threshold * 100.0
for i := 0; i < 100 && delta > threshold; i++ {
classes = AssignToClass(data, centers)
centers = ComputeCenters(data, k, classes)
newi := ComputeInertia(data, classes, centers)
delta = inertia - newi
inertia = newi
log.Debugf("Inertia: %f, delta: %f", inertia, delta)
}
return classes, centers, inertia, delta < threshold
}
// KmeansBestRepresentative finds the best representative among the data point of each cluster in parallel.
//
// It takes a matrix of data points and a matrix of centers as input.
// The best representative is the data point that is closest to the center of the cluster.
// Returns an array of integers containing the index of the best representative for each cluster.
func KmeansBestRepresentative(data *obiutils.Matrix[float64], centers *obiutils.Matrix[float64]) []int {
bestRepresentative := make([]int, len(*centers))
var wg sync.WaitGroup
wg.Add(len(*centers))
for j, center := range *centers {
go func(j int, center []float64) {
defer wg.Done()
bestDistToCenter := math.MaxFloat64
best := -1
for i, row := range *data {
dist := 0.0
for d, val := range row {
diff := val - center[d]
dist += diff * diff
}
if dist < bestDistToCenter {
bestDistToCenter = dist
best = i
}
}
if best == -1 {
log.Fatalf("No representative found for cluster %d", j)
}
bestRepresentative[j] = best
}(j, center)
}
wg.Wait()
return bestRepresentative
}