Commit the man pages and make aggregate public again
This commit is contained in:
47
man/m.univariate.test.Rd
Normal file
47
man/m.univariate.test.Rd
Normal file
@@ -0,0 +1,47 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/mstat.R
|
||||
\name{m.univariate.test}
|
||||
\alias{m.univariate.test}
|
||||
\title{Test the significance of the M statistics by Monte-Carlo}
|
||||
\usage{
|
||||
m.univariate.test(w, groups, resampling = 100, alternative = "two.sided")
|
||||
}
|
||||
\arguments{
|
||||
\item{w}{the weigth matrix indicating the presence probability of each motu
|
||||
in each samples. Each line corresponds to a sample and each column
|
||||
to a MOTU. \code{rownames} of the \code{w} matrix must be the sample
|
||||
names.}
|
||||
|
||||
\item{groups}{the list of considered groups as computed by the \code{\link{dist.center.group}}
|
||||
function}
|
||||
|
||||
\item{resampling}{the number of simulation to establish the null distribution}
|
||||
|
||||
\item{alternative}{a character value in \code{c('two.sided','less','greater')}
|
||||
- two.sided : the m stat is check against the two side of the empirical
|
||||
M distribution
|
||||
- less : test if the M stat is lesser than the M observed in the the empirical
|
||||
M distribution (exlusion hypothesis)
|
||||
- greater : test if the M stat is greater than the M observed in the the empirical
|
||||
M distribution (aggregation hypothesis)}
|
||||
}
|
||||
\value{
|
||||
a vector of p.value with an attribute \code{m.stat} containing the actual M stat
|
||||
for each MOTUs
|
||||
}
|
||||
\description{
|
||||
Computes computes the p.value the M statistics asociated to a MOTU
|
||||
by shuffling MOTUs among location.
|
||||
}
|
||||
\examples{
|
||||
|
||||
data(termes)
|
||||
termes.ok = termes[,colSums(termes$reads)>0]
|
||||
pos = expand.grid(1:3 * 10,1:7 * 10)
|
||||
labels = rownames(termes.ok)
|
||||
d = dist.grid(pos[,1],pos[2],labels)
|
||||
groups = dist.center.group(d,20)
|
||||
w = m.weight(termes.ok)
|
||||
pval = m.univariate.test(w,groups)
|
||||
|
||||
}
|
Reference in New Issue
Block a user