Commit the man pages and make aggregate public again
This commit is contained in:
57
man/normalize-methods.Rd
Normal file
57
man/normalize-methods.Rd
Normal file
@@ -0,0 +1,57 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/metabarcoding_threshold.R
|
||||
\docType{methods}
|
||||
\name{normalize,metabarcoding.data-method}
|
||||
\alias{normalize,metabarcoding.data-method}
|
||||
\alias{normalize-methods,metabarcoding.data}
|
||||
\title{Normalizes read counts by sample or by MOTU.}
|
||||
\usage{
|
||||
\S4method{normalize}{metabarcoding.data}(data, MARGIN = "sample",
|
||||
as.matrix = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{The \code{\linkS4class{metabarcoding.data}} instance
|
||||
on normalisation have to be computed.}
|
||||
|
||||
\item{MARGIN}{Indicates if the sums have to be computed across
|
||||
samples or motus.
|
||||
Allowed values are :
|
||||
\itemize{
|
||||
\item{'sample' or 1} for computing sum across samples
|
||||
\item{'motu' or 2} for computing sum across motus
|
||||
}}
|
||||
|
||||
\item{as.matrix}{Logical indicating if the normalized aboundancies
|
||||
must be returned as a simple \code{matrix} (TRUE) or as a new
|
||||
instance of the \code{\linkS4class{metabarcoding.data}} class
|
||||
(FALSE, the default case).}
|
||||
}
|
||||
\value{
|
||||
Returns a new instance of \code{\linkS4class{metabarcoding.data}}
|
||||
or a \code{numeric} matrix according to the \code{return.as.matrix}
|
||||
parameter.
|
||||
}
|
||||
\description{
|
||||
Method \code{normalize} computes a normalized read aboundancy matrix
|
||||
(relative frequency matrix) of a \code{\link{metabarcoding.data}} instance.
|
||||
Normalization can be done according aboundancies per sample or per MOTU.
|
||||
}
|
||||
\examples{
|
||||
# load termite data set from the ROBITools sample data
|
||||
data(termes)
|
||||
|
||||
# Computes normalized aboundancies per sample
|
||||
termes.norm = normalize(termes,MARGIN="sample")
|
||||
|
||||
# Computes normalized aboundancies per sample and
|
||||
# stores the result as a new layer into the thermes
|
||||
# structure
|
||||
termes$normalized = normalize(termes,MARGIN="sample",as.matrix=TRUE)
|
||||
|
||||
}
|
||||
\seealso{
|
||||
\code{\linkS4class{metabarcoding.data}}
|
||||
}
|
||||
\author{
|
||||
Aurelie Bonin
|
||||
}
|
Reference in New Issue
Block a user