Files
obitools4/pkg/obitools/obilandmark/obilandmark.go
2025-01-27 17:12:45 +01:00

197 lines
5.9 KiB
Go

package obilandmark
import (
"os"
"sort"
"sync"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obialign"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obidefault"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obiiter"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obiseq"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obistats"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obitax"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obitools/obirefidx"
"git.metabarcoding.org/obitools/obitools4/obitools4/pkg/obiutils"
"github.com/schollz/progressbar/v3"
log "github.com/sirupsen/logrus"
)
// MapOnLandmarkSequences performs sequence mapping on a given library of bio sequences.
//
// Computes for each sequence in the library a descriptor vector containing describing the sequence
// as the set of its distances to every landmark sequence.
//
// Parameters:
// - library: A slice of bio sequences to be mapped.
// - landmark_idx: A list of indices representing landmark sequences.
// - sizes: Optional argument specifying the number of workers to use.
//
// Returns:
// - seqworld: A matrix of float64 values representing the mapped coordinates.
func MapOnLandmarkSequences(library obiseq.BioSequenceSlice, landmark_idx []int, sizes ...int) obiutils.Matrix[float64] {
nworkers := obidefault.ParallelWorkers()
if len(sizes) > 0 {
nworkers = sizes[0]
}
library_size := len(library)
n_landmark := len(landmark_idx)
todo := make(chan int, 0)
seqworld := obiutils.Make2DArray[float64](library_size, n_landmark)
pbopt := make([]progressbar.Option, 0, 5)
pbopt = append(pbopt,
progressbar.OptionSetWriter(os.Stderr),
progressbar.OptionSetWidth(15),
progressbar.OptionShowCount(),
progressbar.OptionShowIts(),
progressbar.OptionSetDescription("[Sequence mapping]"),
)
bar := progressbar.NewOptions(library_size, pbopt...)
waiting := sync.WaitGroup{}
waiting.Add(nworkers)
compute_coordinates := func() {
buffer := make([]uint64, 1000)
for i := range todo {
seq := library[i]
coord := seqworld[i]
for j := 0; j < n_landmark; j++ {
landmark := library[landmark_idx[j]]
match, lalign := obialign.FastLCSScore(landmark, seq, -1, &buffer)
coord[j] = float64(lalign - match)
}
bar.Add(1)
}
waiting.Done()
}
for i := 0; i < nworkers; i++ {
go compute_coordinates()
}
for i := 0; i < library_size; i++ {
todo <- i
}
close(todo)
waiting.Wait()
return seqworld
}
// CLISelectLandmarkSequences selects landmark sequences from the given iterator and assigns attributes to the sequences.
//
// The fonction annotate the input set of sequences with two or three attributes:
// - 'landmark_id' indicating which sequence was selected and to which landmark it corresponds.
// - 'landmark_coord' indicates the coordinates of the sequence.
// - 'landmark_class' indicates to which landmark (landmark_id) the sequence is the closest.
//
// Parameters:
// - iterator: an object of type obiiter.IBioSequence representing the iterator to select landmark sequences from.
//
// Returns:
// - an object of type obiiter.IBioSequence providing the input sequence annotated with their coordinates respectively to
// each selected landmark sequences and with an attribute 'landmark_id' indicating which sequence was selected and to
// which landmark it corresponds.
func CLISelectLandmarkSequences(iterator obiiter.IBioSequence) obiiter.IBioSequence {
source, library := iterator.Load()
library_size := len(library)
n_landmark := CLINCenter()
landmark_idx := obistats.SampleIntWithoutReplacement(n_landmark, library_size)
sort.IntSlice(landmark_idx).Sort()
log.Infof("Library contains %d sequence", len(library))
var seqworld obiutils.Matrix[float64]
for loop := 0; loop < 2; loop++ {
log.Debugf("Selected indices : %v", landmark_idx)
seqworld = MapOnLandmarkSequences(library, landmark_idx)
classifier := obistats.MakeKmeansClustering(&seqworld, n_landmark, obistats.DefaultRG())
converged := classifier.Run(1000, 0.001)
inertia := classifier.Inertia()
log.Infof("Inertia: %f, converged: %t", inertia, converged)
landmark_idx = classifier.CentersIndices()
sort.IntSlice(landmark_idx).Sort()
}
log.Debugf("Selected indices : %v", landmark_idx)
seqworld = MapOnLandmarkSequences(library, landmark_idx)
seq_landmark := make(map[int]int, n_landmark)
for i, val := range landmark_idx {
seq_landmark[val] = i
}
initialCenters := obiutils.Make2DArray[float64](n_landmark, n_landmark)
for i, seq_idx := range landmark_idx {
initialCenters[i] = seqworld[seq_idx]
}
// classes := obistats.AssignToClass(&seqworld, &initialCenters)
for i, seq := range library {
ic, _ := obiutils.InterfaceToIntSlice(seqworld[i])
seq.SetCoordinate(ic)
// seq.SetAttribute("landmark_class", classes[i])
// if the sequence is a landmark sequence
if i, ok := seq_landmark[i]; ok {
seq.SetAttribute("landmark_id", i)
}
}
if obidefault.HasSelectedTaxonomy() {
taxo := obitax.DefaultTaxonomy()
if taxo == nil {
log.Fatal("No taxonomy available")
}
taxa := obitax.DefaultTaxonomy().NewTaxonSlice(len(library), len(library))
for i, seq := range library {
taxon := seq.Taxon(taxo)
if taxon == nil {
log.Fatal("%s: Cannot identify taxid %s in %s", seq.Id(), seq.Taxid(), taxo.Name())
}
taxa.Set(i, taxon)
}
pbopt := make([]progressbar.Option, 0, 5)
pbopt = append(pbopt,
progressbar.OptionSetWriter(os.Stderr),
progressbar.OptionSetWidth(15),
progressbar.OptionShowCount(),
progressbar.OptionShowIts(),
progressbar.OptionSetDescription("[Sequence Indexing]"),
)
bar := progressbar.NewOptions(len(library), pbopt...)
for i, seq := range library {
idx := obirefidx.GeomIndexSesquence(i, library, taxa, taxo)
seq.SetOBITagGeomRefIndex(idx)
if i%10 == 0 {
bar.Add(10)
}
}
}
return obiiter.IBatchOver(source, library, obidefault.BatchSize())
}